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ABSTRACT

An analysis of a low-order barotropic system with orographic and momentum forcing
is presented. The low-order expansion of the streamfunction is performed on a
spherical geometry, the expansion functions thus being spherical harmonics. Two
purely zonal components and two wave components with the same zonal wavenumber but
different orders, or latitudinal wavenumbers, are described by the model. The
non-linear terms appearing in the six ODEs governing the time evolution of the

system, give rise to bifurcations into multiple steady-state solutions.

Tn order to retain as many non-linear terms as possible, one must, however, be
careful in the choice of compeonents. An analysis of the different possibilities
is presented and two examples having quite different properties are investigated.
Three of the components are the same in each example, while the three others

differ in their symmetry properties around the equator.

For the example which is believed to be most representative of realistic condi-
tions, it is shown that a combination of orographic forcing and zonally asymmetric
momentum forcing is required to obtain multiple steady-state solutions for
realistic parameter values. The forcing must exceed certain critical values for

a bifurcation from one to three steady-states to appear. A stability investiga-
tion of the steady state triplets shows that two are stable while one is unstable.
Examining the energetics of the two stable steady-states for a situation which
corresponds to a wintertime forcing pattern, it is shown that one of the stable
steady states is much more zonal than the other. The non-zonal circulation is
similar to a "blocked" flow. Another significant difference in the energetics
between the two flow types is the direction of the energy transfer between zonal
and eddy kinetic energy. Comparisons with observational studies of "blocked"

and zonal flow confirms that this is a characteristic feature of the observed

energetics.



1. INTRODUCTION

In recent years there has been a renewed interest in the study of low-order
systems to gain some insight into non-linear mechanisms present in the atmosphere.
The basic procedure used when studying a low-order system is to expand the space
dependent quantities into a series of orthogonal functions and to truncate this
expansion by just retaining a féew components. = Each component is thought of as
representing a certain scale of motion and, by inserting the truncated expansion
into an equation of motion, one can study the non-linear interactions between

the scales considered. One thus neglects all interactions with spectral compon-
ents outside. the ones taken into account. This is of course a serious limitation
of low-order systems, but it is nevertheless believed that a study of such
systems is one way of getting an insight into the non-linear mechanisms present

in the atmosphere.

When the orthogonal expansion is inserted into an equation governing the atmos-
pheric fields of motion, the truncation cannot be made arbitrarily. This was
first demonstrated by Lorenz (1960) for the barotropic vorticity equation on a
B-plane and later by Platzmamn (1962) for the same equation on a spherical domain.
Lorenz obtained what he called a "maximum simplification" of the atmospheric
equations of motion, because a further reduction of components would lead to a
system with trivial non-linear interactions. Later, Lorenz (1962) used a low-
order system to study forced behaviour of the flow in a rotating annulus for
varying rates of heating and rotation. That study was very successful in

describing theoretically the observed features of such a flow.

To study the effect of orographic forcing on the non-linear énergy transfer
between the larger scales of motion, Charnéy and de Vore (1979) (hereafter called
Cdv) extended Lorenz's (1960) barotropic B-plane model to include orographic
forcing. With a minimal system they showed that for a given forcing it was
possible for the flow to arrange itself in several equilibrium states, some
stable and some unstable. Wiin-Nielsen (1979) studied a low-order barotropic
model on the sphere and with only Newtonian forcing. He also obtained multiple
steady-state solutions when the forcing exceeded a certain critical value.
Trevisan and Buzzi (1980) recently studied the effect of orographic forcing on

a non~-dissipative, barotropic, B-plane channel model and obtained results similar
to the ones described by CAv. They did, however, not expand the solution in
trigonometric functions but instead they chose to expand the solution in terms
of a small parameter, the ratio of the width to the length of the channel.
Solving for the zero-th order streamfunction, they obtained an equation similar

to the one of a forced non-linear oscillator. Combining the effects of orographic



and cyclonic vorticity forcing, Kalnay-Rivas and Merkine (1980) have recently
shown that non-linear mechanisms can enhance the response downstream of the
orography if there is a certain phase relationship between a cyclonic vorticity
source and an isolated mountain.. The flow patterns found for the large amplitude
steady-state soluticns of their g -plane, channel model strongly resemble

atmospheric blocking.

In Trevisan and Buzzi's and CdV's studies, the multiplicity of steady states is
associated with the resonance occurring when the Rossby waﬁe, generated by the
zonal flow over the orography, becomes stationary. Through the non—linear'
interaction between the zonal flow and the wave compohents of the flow and_due
to the orography, the components can arrange themselves in two stable eqﬁilibria,
one close to resonance with a large ampiitude wave and a weak zonal flow, the

other with a strong zonal flow and a weaker wave component.

In the abovementioned studies the existence of the two stable equilibria were
dependent on the resonance phencmena in a g-plane channel. It is the purpose
of this study to 1nvest1gate whether this result is also valid for a low-order
model with a spherical geometry. We will also investigate the combined effects

of orographic and Newtonian forcing.

The governing equation of the model used is the equivalent barotropic, quasi-
geostrophic vorticity equation. Orographic forcing is introduced through a
forced vertical velocity at the lower poundary while the Newtonian,forcing acts
as a momentum source/sink in the vorticity equation. After an expansion of the
stream function and forcing fields in spherical harmonics, a low-order system

is chosen which includes nonlinear interactions between .all scales involved
(Platzmann, 1962). The minimal system contains two purely zonal scales of motion
and two wave components with the same zonal wave number but different latitudinal
scales of motion. It is shown that a certain choice of components gives the same
type of equations as the ones used by €dv, while other choices give systemé of
equations guite different from CAV's but more similar to the ones used by
Wiin-Nielsen (1879). Both types of systems have multlple equilibria for certain
combinations of orographic and Newtonian forcing but, for a choice of parameters
believed to be realistic in representing conditions present on the Northern
Hemisphere, it is demonstrated that the flow patterns obtained for the stable
equilibria have some features which are different from the ones obtained by Cdv.
The energetics of the equilibria are also examined and compared to a case study

by Wiin-Nielsen et al (1964) and Wiin-Nielsen (1965) .



2. THE MODEL

In order to study the effects of orography and Newtonian forc1ng on atmospherlc
flow, we assume the flow to be governed by the quasi-geostrophic vorticity

equation

2 .2 2 L)
+ Vs tE) =f Z-E + 1
5¢ Vn vV (V' ) o 3p V n V ng (1)
For an explanation of notation, see the list of symbols in Appendix I. The
effect of the orography is introduced into the model by integrating (1) vertically
assuming the atmosphere to be .equivalent barotropic and taking the vertical

velocity at the surface (p = po) to be given by
w -~ gp W_=-gp V'Vm _ (2)
where m is the dimensional mountain height.

The eqguivalent barotropic model is obtained by assuming the vertical variation

of the streamfunctlon, n, and the forc1ng, N to be of the form

R

where the horizontal overbar denotes a vertical average. Integrating (1)
vertically, inserting‘the vertical velocity given by (2) at the lower boundary
and applylng the 1ntegrated vorticity equation at the equlvalent barotropic

level p (Al p ) = A (p) ) we get,
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By non-dimensionalizing (3) with the angular velocity and radius of the earth.
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we obtain

=J( +h, V) - 2 N _ €L + Tg ' ‘ : (4)

which is the non-dimensional form of the governing equation used in this study.

2.1 Spectral representation

The main purpose is to investigéte how the non-linearity present in the advection
texrm J(z + h, ¥) in Eq. (4) affects the energy transfer between different scales
of motion. We do this by determining the steady states of a spectrally truncated
version of (4), and investigate their stability. The most interesting parameters
to be varied are the mountain height, given by h, and the intensity as well as
the phase (in relation to the mountains) of the Newtonian forcing, EE' The
spectral expansion is performed on a spherical domain, the expansicn functions

thus being spherical harmenics

Following the analysis given by Platzmann (1962), we write the vorticity, &. the

mountains, h, and the Newtonian forcing, CE’ as a sum of spherical harmonics

g [
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Here PY(U) are the associated Legendre polynomials normalized so that
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and y is the complex wavenumber, Yy = mY + ikY. The zonal wavenumber of a
~ component y is given by kY while mY defines the order of the Legendre polynomial.

By tﬁe definition of ¢ we also have

1
p =-= T (7)
Y e, 7Y

where ¢ =m (m + 1).
Y ¥

Inserting the expansion (5) into the non-dimensional barotropic vorticity

equation (4), we obtain for each wavenumber vy

dg
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where the transport spectrum AY(w,;) is given by

£, ¢ (9
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The summation over g and r (complex wavenumbers) is non-redundant, i.e. only

distinct combinations of g and r occur.

Assuming the orography to be in only one spectral component, o, with the

amplitude ha' the interaction between the flow and the mountain may be written

z
~h-) (10)
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where an overbar denotes a complex conjugate. The so called interaction

integrals, IY g r,appearing in (9) and (10) are defined
4 7
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It can be shown, as given byPlatzmann (1962), that the integral appearing in (11)
when kY = kq + kr vanishes unless the following selection rules are satisfied

for vy, g and r.

k2 + k2 # 0 (12a)
q r

m - m |<1n <|lm +m . ’ (12b)
q r Y q r

m +m +m is odd (12¢)
q r Y
gFr
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When truncating the expansion for r, retaining only a few components, the
selection rules give several restrictions on the choice of components if one
wishes to retain some non-linear terms. Platzmann (1962) showed that in order
to obtain active non-linear interactions between the components, one needs at
least a three component system, i.e. one involving three complex wavenumbers.
The complex conjugate of each component with k # 0 must also be included to

describe the phase of the wave components.



‘The simplest three component system having active non-linear interactions is one
in which one component is purely zonal, i.e. k = 0, and the two other components
have the same non-zero wavenumber. In Platzmann's three component system, the
purely zonal component with the complex wavenumber y = 1 is implicitly included,
as there are no non-linear flow interactions to this component. When orographic
forcing is present, there may however be interactions involving the Pl(u) com—
ponent between the orography and the other flow components and consequently

this component always has to be included. Physically the component with y = 1
can be seen as giVing rise to a zonal flow with constant angular velocity. 'In
the conservative case without forcing this can be taken care of with a suitable
coordinate transformation. In the forced case, +the coordinate system has to have

a fixed relation to the forcing, thus the component with y = 1 has to be included.

The choice of components in the special case of a three component system that we

want to consider here can thus be summarized as in Fig. 1.

T 0 Ly hy 0k
leahata
.
ng CZ
16 L5 o
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1
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Fig. 1 Representation in the wave number plane of the components
used in the model. The horizonal axis gives the zonal wave

number, k, while the vertical axis gives the order, or
latitudinal wavenumber, m of the Legendre functions.



The notation adopted in Fig. 1 for the wavenumbers o and B implies

o =.n1 + ig B = n1 + 12
Orography is included in only one component, a, while Newtonian forcing is
assumed to be present in the wave component o and the purely zonal component
with m = 1. Orography is thus present in only one wave component while there
is both a zonal and a zonally asymmetric momentum forcing, the latter being in
the same wave component as the orography. Using (8) we can now write our
truncated model as a system of ordinary differential equations in the time

dependent variables Eo"gn’ Ca and ¢

B
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where the three different interaction integrals appearing are
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and ¢ = n(n+1), cy = nl(n1+1), c, = n2(n2+1)



The interaction integral I appears in front of terms describing interactions
between the zonal component Lo the wave componeht Co and the wave component ;B
Interactions between g gu and C& involve I1 while the interactions between

Lyt CB and CB involve I,. The system thus only describes interactions between
wave components and the zonal component gn, no wave-wave to wave interactions
are possible in this low-order system. A pictorial representation of the non-

linear interactions within the system, is given by the arrows in Fig. 1.

In order to find the steady states of this system and theixr stability properties
more easily, we convert the system (13) into six equations in the real domain.
At the same time, we -convert the vorticity amplitudes of each component into
stream function amplitudes with the aid of Eg. (7). Thus we defin? the real

amplitudes of the stream function to be

(uo > O for westerlies in the Northern Hemisphere)

u =g /2 | (15a)
z =g /e (15b)
x, = =l c2) /0 (15¢)
vy =~ i(ga - EO—L)/C1 : ; (154)
Xy = - (;B + cé)/c2 (15e)
¥y = - i(zB = Eé)/c2 . (15£)

and the truncated expansion of the stream function in terms of the real coefficients

becomes
Yl Ar 1) = - uo(?) Py A z(r) P () + ‘ (16)
+ (31 (1) cos LA +y, (1) sin 22) Pﬁl(u) +
+ (%, (1) cos &)X + ¥, (t) sin 2A) Pi ()

2
A similar éxpansion holds for wE while the orography, h, is assumed to be given

by

- %
h = h, cos gA Pnl(u) (7



Inserting (15), (17), and the corresponding expressions for wE into Eq. (13), we

obtain
uo = X o hlalyl —suo + uoE
2 =y Ky - xy,) : “hy 8y, + 83y, ) ez
¥1T YRR, Y YaZYy - oguy, + By, T EX v Xg
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Without forcing and dissipation, the system described by Egs. (18) is both energy
and enstrophy conserving. If only orographic forcing is included, the system

is conserving energy but not enstrophy.

2.2 Choice of components

Before continuing with an investigation of the steady states and stability
properties of Egs. (18), one must decide which associated Legendre polynomials

to choose when evaluating the interaction integrals given by (14) and the
coefficients given by (19). For certain choices of components the interaction
integrals will vanish and one has to be careful in order to fulfill the selection

rules given by (12) for at least one of the interaction integrals.

Through the symmetry properties of the Legendre polynomials, it is clear that

if n is even, both I1 and 12 will vanish. If, on the other hand, n is odd, 11

and 12 are non-zero. For the interaction integral I to be non-vanishing, we

must require that the sum n + n, +n, is odd according to selection rule (12c).

These results are summarised in Fig. 2 where all possible combinations of n, ny

and n, are listed.
. 10



even ‘odd

[#0

I1=12=O nq

0
| I#

even

l———- [=0

I#0

odd Ny

even odd

L—{1=0

1,#0.1,#0 ny

r 1=0

odd even

no

L-— 1#0

Fig. 2 A list of all possible combinations of even and odd values
of n, n, and n,. Using selection rule(12c) conclusions may
be drawn regarging the values of the interaction integrals
I, I, and I, as indicated in the figure. Underlined combina-
tions are tﬁose which give a non-zero value of 1.

11



An even n corresponds to a zonal component, z, which is an even function around
the equator. For an even wavenumber £, an even value of n1 or n2 implies a wave
component which is symmetric around the equator and thus gives rise to cross-
equatorial flow. If the wavenumber ¢ is odd, odd values of n1 or n2 give rise

to cross equatorial flow. 2an important property of the system is that in order

to include non-linear flow-flow interactions affecting the time derivative of

the zonal component z, it is necessary to have I non-zero as can be seen from
Egs. (18). 1In Fig. 2, combinations of n, ny and n, which result in I being non-
zero are underlined. It can be seen that if n is even, one of the wave components
must have cross-equatorial flow while if n is odd, it isfalWays possible to choose

ny and n, so as to avoid cross-equatorial flow.

3. INVESTIGATION OF STEADY STATES

In this section the steady states and their stability properties are investigated
for a model described by Egs. (18). Both the case of a symmetric and an anti-
symmetric zonal component, -z, is considered. For the anti-symmetric case, which
will turn out to be the most interesting one, a detailed investigation of the

flow patterns and the energetics for two steady-state triplets will be presented.

3.1 Symmetric zonal component

In the case of a symmetric zonal component, z, we will arrive at a system of
equations which have exactly the same structure as the ones derived by CdV for a
B-plane, channel flow. Because of this similarity between the two systems we
will not go into any detail regarding the combined effects of orographic and
wave momentum forcing. ‘We will only show the mathematical method used to analyse
the bifurcation properties. The same method will be used later in a more

complicated example.

If n is even, both I1 and I2 vanish and we must choose n1 and n2 so that one is

even while the other is odd in order to assure that I is non-zero. The system

of Egs. (18) now becomes
r Y% T dlhlyl - Euo * Yo
z = yl(x2y1 - x1y2) - 62h1y2 - ez
X1 T YoBYy T oagulyy By -oexp +xg
(20)
=— + - - B. -
Yy TRy ToagUe¥y - Shpug - Bix, - ey 4y,
¥y T Y3®Yy T ooy, - By, - oexy
. § =-y.,zZX, + g,u X + § . h, =z - B,x, - ey
2 T TY3%% 2072 61 272 2
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and this system is, apart from the numerical values of the constants, exactly
the same as the one derived and studied by CdVv for a B-plane, channel flow.

We notice that, as in cdv, if z, X, and Yo are zero initially they will remain
zero and excluding the Newtonian forcing in the wave components, the system may

be written

.
1'lo = 6lhlyl T &Y% + uoE
4 k= -y, + By, - EX, | ‘ (21)
Y, = aqugxy T 8hyuy - ByXy - ey
"

Solving for the steady states of the system given by (21), we arrive at the

following eguation in u

u 28 u u u (52 + 32)
3 2 oE , 1 o 2 2 2 . oOE, OF 1
u - oug (—E—-+ &——0 + —5—1[6164h1 + e + Bl + 261u1 - 1=2 5
1 oy . ‘ al
. . (22)
which also may be written
2
u §.8, h; u )
T tu (23)
e+ (81 - aluo)

The polynomial form (22) of the steady-stateequation shows that we can at the
most have three steady states for certain values of the forcing parameters.
The other form of the steady-state equation, (23) allows us to investigate by
graphical methods how the number of steady states varies with the forcing
parameters. ' ‘ ' .
The example chosen to illustrate this is one in which § = 2, n = 2 and

n, = 3. The latitudinal structure of these components is given in Fig. 3.
Fig. 4 is a plot of the curves given by Eg.(23) for some values of hl'

On ththorizontal axes, u_ is plotted in units of m/s corresponding to the
windspeed of the uo—component at 45° latitude. The vertical éxes is also

given in units of m/s at 45° latitude corresponding to the purely linear

response in u, for a given forcing, U p-

13
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Fig. 3 Latitudinal structure ‘of the components considered in
the case of a symmetric zonal component, z. The hori-
zontal axis gives latitude, u, while the vertical axis
gives the normalized amplitude of the Legendre functions.

The curve in Fig. 4 for h1 = 0 is thus a straight line but for increasing values
of h1 we obtain a family of curves having both maxima and minima. As an example

E equal to 150 m/s. This line

of a bifurcation a straight line is drawn for =
intersects the curve for h1 = 0.25 three times and it is thus possible to have
three steady-states for these values of the forcing parameters. 2an investigation
of the eigenvalues to Eq. t21), linearized arouna a steady state, gives stébility
properties as indicated by full (stable) and dashed (unstable) lines in Fig. 4.
The bifurcation from oﬁe‘to three steady—states occurs for a value of h1 somewhere

between 0.10 and 0.15.

The stability of the steady states given by (23) with respect to perturbations
of z, Xy and Yy ("second mode perturbations") will of course be the same as in
Cav, but if we choose n1 to be o©dd, n, has to be even in order to preserve the
non-linear interactions and this implies cross-equatorial flow in the X, and Yy
components. It is not believed that cross-equatorial flow has any significant
effect on the atmospheric behaviour that we wish to describe with this very

crude model and it would,‘therefore, be preferable to exclude all wave components

14.
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Fig. 4

20 40 60 - 80 100 120 1'40
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1l1lustration of the bifurcation properties for variations of the
forcing parameters in the case of a symmetric zonal component.
Momentum forcing is ‘acting on the zonal component with amplitude u,
while orography is present in only one wave component. The hori-
zontal axis gives the amplitude of the u -component at a steady - state
in terms of the flow velocity at 45° 1atitude in m/s. The vertical

~axis gives the zonal forcing divided by the dissipation rate, which

is the linear streamfunction response to the forcing in the absence

of mountains. The forcing is thus also given in m/s at 4590 latitude.
Each curve corresponds to steady states for a certain value of the
orographic parameter, h.. Numerical evaluation of the eigenvalues

for each steady state give stability properties as indicated by

full lines (stable) and dashed lines (unstable) .For further explanations,
see text. -5 -1

Parameter values: € = 0.1, g = 8 km, Q=17.29-10 s ,

6.37-106 m, U, = 0.71

a

15



which are non-zero at the equator. This is however impossible if we choose a
zonal component which is an even function around the equator and we wish to-
have at least one interaction integral non-zero, so therefore we now turn to the

case of an antisymmetric zonal component.

3.2 'Ahfisymmetric zonal component

If the zonél component z is antisymmetric around the equator, we arrive at a
system of equations containing terms not present in the B-plane, channel model
used by Cdv. We should therefore expect that this model has properties different
from the cdv modél (or the case treated in the previous section) and we will
therefore go into a more detailed study of the bifurcation properties. Both

oregraphic, zonal momentum and wave momentum forcing will be taken into account,

When n is odd both interaction iﬁtegrals I1 andYIZ'are non-zero and, if both n,
and n, are even or odd, I will alsc be non-zero. It is desirable to have I non-
zero, as otherwise wave-wave interactions to the zonal component z are impossible{
From the discussion in the previous sebtiqn, we may also conclude that ny and n,
should be odd in order to avoid cross—eqﬁatoriél flow for an even zonal wave-
number, &. In this case, we have the full equations (18) which we will write here

once again.

u, = h161y1 —euo f uOE

2 =y Yy - %)) “hy (8,7, + 6_35’1)‘Ez

’.‘1 = Y2y * YRy - aguy 3‘13"1 ‘ | - EX1‘ *Xg e
R R RPN U1U%1 T By¥y R (857~ 8ug) - ey +yyy

Xy = Y329y * Y52y, - @oux¥y * ByY, | T Exy

¥y = - ¥gPE - ygExy * au%, - By¥y +hy8gz T &Yy

16



This system cannot be decomposed into two three-equation systems as in the
previous case because of the term - h1 63 Yy in the Z-equation. We thus have to

take all six components into account when solving for the steady states.

To solve for the steady states, we first notice that the equations for kl, yl,
kz and ?2 are linear in X0 Yqr %y and Yy- With the time derivatives set equal

to zero, we can write this as a linear system of equations,

-B=¢C | (25)

2
where
- € _(alu - Bl - Y4Z) 0 Yzz
A, T By T YyE Tk T Yo 0

A= 0 b4 - B, — o,u_ + z

= Y3 € 2 T %2 s
- Y3% 0 - (82 - ayu + YSZ) - €
*q T *1g
Yy hy(§u, - 852) = Vg

B= x2 and.C = 0
Y - h.dg2

From Eq. (25) we can solve for Xl' yl, x2 and y2 as functions of uO and z. - By
inserting these solutions into ﬁo =0 and 2 = 0 we obtain two simultaneous non-
linear equations in u, and z. By solving the equation z = 0 for u, and

substituting the (se) value(s) in ﬁo = 0, we finally arrive at one equation in'z

which may be analysed by graphical methods.

The example which will be analysed in detail here is one which tries to resemble
the conditions present in the Northern Hemisphere. We assume a mountain and
Newtonian forcing in the component Pi. The zonal component z is chosen to be in
Pg while the second wave component with amplitudes in X, and ¥y is assumed to

be in Pé. The latitudinal structure of these components is given in Fig. 5. This
choice of components excludes cross—equatorial flow and simplifies the equations
(24) somewhat because in this case Y3 =Y, = 0. Note here that the uo, x1, and

Yy components are the same as the ones used in the case of a symmetric zonal

component z in Section 3.1.
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Fig. 5 As Fig. 3, but here for the case of an asymmetric zonal component, z.

Solving for the steady~state values of X, and ¥y, we fing,

66h1z (y‘5z + 62 - uzu-o)
2 2 2
e+ (Ysz + 32 - oczuo) ] ,
; . . : (26)
. - §6hlze
2 2 2
» et gz + By - aju))

and for 23 and vy, we have

elxg T ¥p2 ¥p) + layu, - By) (S - Schyzm -y 4 Yy ZX,)

. = 1E
{ =
92 + (otlu0 - 81)2
(27)
o - E04h1s ~ 8502 - yyp T vaExy) 4 (agu - B (xp + v,2v,)
1 -2 2
£ +,(0L1u0—81)
Notice the term (o&luo - Bl) in the denominator of (27). We still have a resonance

in the forced wave component for u, = Bl/(11 as in the symmetric zonal component

case.
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To analyse the bifurcation properties of this system we plot uoE/g as a function
of z with the aid of the equation ﬁo = 0. The zonal component ug is given as

a function of z by solving the equation Z = 0. As this equation is non-linear

in ur there may be multiple values of uO for one z-value which will give several

branches of the curve uoE/E (z).

For the purely orographically forced case, the result is shown in Fig. 6a. It

is seen that for the mountain parameter h1 < 0.3 only one steady state exists

and a numerical evaluation of the corresponding eigenvalues has shown that this
steady state is always stable. For higher mountains than 30% of thekscale height
and fairly large values of the zonal forcing a bifurcation from one stable to

two stable and one unstable steady states occurs.. The unstable steady states are
given by the dashed curve in Fig. 6a. Comparing these bifurcation properties
with the ones found for the earlier case involving only three components (which

are the same as the z, x, and ¥y components in this case) one finds that the

1
mountain height required for the bifurcation from one to three steady states is
about twice as high. The zonal forcing required is about the same, still very
high. &An example of the stable flow field obtained for forcing below the bifurca-

tion point is shown in Fig. 6b.

Taking the mountain height h1 equal to zero and only forcing the system with a
momentum source/sink in the uo and x1 components, one may solve for the

steady state(s) analytically. By equation (26) we find that X, and ¥, must be
zero and, using the eguation for Zz = 0 (taken from (24)), we also find z to

be zero. The zonal component u_ is only dependent on the zonal forcing u _.

OE
while the two forced wave components are given by

1T g
2 oE
e (B may )
-(28)
OoE
. - (31 - ul‘jg”)
Yy T Tip : a
2 oE
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Fig. 6a As Fig. 4, but with the steady state value of z on the horizontal axis
and z being an antisymmetric function around the equator,
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Fig. 6b

Flow pattern Sbtained for a stable steady state with
ok

h, = 0.1, =~ =170 m/s.

Full lines are isopleths for the streamfunction, dashed lines. are
isopleths for the orography. Areas with the orography above its
mean value ('"land areas') are green, while areas with the orography
below its mean value ("oceans') are blue.
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As there is no orography the phase of the Newtonian forcing is irrelevant and
ylE is set to zero. We thus have only one steady state in this case. Comparing
this with the study by Wiin-Nielsen (1979) one finds that in his case it was
possible to find multiple steady states for momentum forcing in only one of the
wave components. This result is due to the fact that he is considering the

Ccase of a symmetric zonal component and the type of flow pattern described by
his choice of components is different from the case considered here. In

particular, his choice of wave components allows for flow across the equator.

From Eg. (28) we see that the response to the wave forcing is phase shifted to
the west of the for01ng 1f the zonal for01ng is sub -resonant (u /s < B /a

to the east if the zonal for01ng is above resonance (u /e > B /a The
amplitude of the wave forecing response 1s also dependent on the zonal forcing,
maximum amplltude is obtalned when there is resonance, i.e. when the phase speed
of the forced Rossby wave 1s equal to zero. The stablllty of the single. steady
state may be analysed by llnear151ng (24) around the steady state and determining
the elgenvalues of the llnearlsed problem The stablllty matrlx is obtalnedtby

dlfferentlatlng (24) and writing uo =,uo - 6uo etc. for small perturbatlons (5u )

around - the steady state (uo) giving

80 1-¢« = ‘ " o0 . 0. | 0 0 | atuo
sx, | |- 07, e By - agu o o . o 1 §x1
691 _ ' alil al;o —vsl Llfgv | VO"i~AO-’; ;ﬁ»b‘ . 6y1
Rt 0 o 0. -e oy S Y% 8z
5>'<2 0 0 0 0 -e A. By = cxzﬁo 8x,
8%, 0 0 0 0 cxzﬁo -8, € 8y,
s e L D
(29)

The eigenvalue equation is

2 2 -, 2 2 -2,
(e +0)” ( (e +a)° + (B1 -~ aluo) ) (e + o))" + (62 - azuo) ) =0 (30)
where ¢ is the eigenvalue, which has the following six roots
= - = - X - a.n =— e X - o.a
01,2 = € 03'4 € 1(81 uluo) 05,6 £ 1(82 uzuo)

The single steady state is thus always stable as all real parts of the eigenvalue

are negative.
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Combining orographic and momentum forcing, we get a steady state problem that has
to be solved numerically. Using the same procedure as iﬁ the case where we only
had orographic forcing, we may plot a graph of —Sg—as a function of z with one
branch for each ug which is a real root of the eguation z = 0. For small values
of momentum forcing in the wave components we obtain a graph which only differs
slightly from Fig ba, but as the amplitude of the forcing is increased, we obtain
a bifurcation from one to three steady states even for mountain heights well below
the critical one in Fig. 6a. The minimum forcing amplitude required in the wave
components for a bifurcation to occur depends on the phase angle between the

orography and the momentum forcing and the strength of the zonal momentum forcing.

Tncreasing the amplitude of the wave forcing further, we cbtain three steady states
over certain phase intexvals and for large values of the momentum forcing, we

have further bifurcations into more than three steady states. For a large momentum
source/sink the physical validity of the model is very questionable, sO here we
have chosen to analyse a case where the forcing amplitude is just above the first
bifurcation point and we have three steady states in two disconnected phase
intervals. There is one intérval around 0 degrees, that is, a vorticity sink in
regions of orographic maxima, and one interval around 180 degrees which gives a
vorticity source around orographic maxima. The bifurcation plots aré shown in

Figs. 7a and 7b for the intervals around 0° and 1800‘respectively.

A numerical investigation of the eigenvalues shows that the steady states
corresponding to points on the bifurcation curves have stability properties

as indicated by dashed (unstable) and full lines (stable) in Fig. 7.

For the parameter values chosen in Fig. 7, we see that there is quite a wide
range of Uk values for which there exist three steady states when the phase
difference is around o®. 1t may also be seen that for a phase difference of 600,

u
OFE . . R :
the —E—-value required for three steady states to occur is at a minimum. Around

the 180o bifurcation, the interval in E%E-is smaller and the minimum value of EEE
required is higher than in the earlier case. To exemplify the bifurcations
occurring in the two different phase intervals, plots of the stream functions
associated with each possible steady state for a given set of parameter values

have been prepared (Fig. 8).

The most realistic flow patterns are obtained in an example where the phase
difference is around 0°. This corresponds to a winter type circulation where
heating over oceans acts as a source of cyclonic vorticity. The intersections

between the curve for 0o° phase difference and the horizontal line for
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Fig. 7a Illustration of the bifurcation properties for the case of an

asymmetric zonal component, z. Momentum forcing is present in the
zonal component with amplitude u _, and the wave components with
2= 2 and n. = 3 (amplitudes x and y__). The axes are similar to
the ones in Fig. 4, the only d%gference being that the horizontal
axis here gives the steady state value of z. The wave forcing amplitude
in terms of the linear response when no orography and no non-linearities
are present 1
I T VI s B
is 25 m/s (zonally averaged velocity at 45o latitude). ~
The thin horizontal lines at u /e = 70 m/s in both figures indicate which
values are taken for the examp?gs of Figs. 8-11.

-5 -1
Parameter values used: g = 0.1, H=8km, @ = 7.29:10 s,

a=6.37"106 n, Mg = 0.71, h; = 0.1

Curves are given for a phase shift between the orographic and .asymmetric
momentum forcing ranging from -60° to 120°,
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Fig. 7b Same as for

Fig. 7a but here curves are given for a phase shift between

the orographic and asymmetric momentum forcing ranging between 150° and

240°.
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uoE/e = 70 m/s in Fig. 7a give the amplitudes of the z-component at the steady
states. With the aid of Egs. (26)-(27) we may calculate the amplitudes of the
other components and the resulting stream function fields are shown in Fig. 8.
The top and bottom\flow fields are stable while the middle one is unstable.
Comparing the two stable flow fields, one sees that the top one has a more
pronounced wave component than the bottom one (due.to the unequal spacing of

the isolines for the stream function this is perhaps more evident when comparing
the energetics given in Fig. 9). One may therefore associate the top flow field
with a "blocked" situation while the bottom one, with the phase of the trough
being much more to the east, may be thought of as a high index zonal type of
circulation. The trough in the "blocked" state is roughiy in phase with the
trough found in the case where we had no momentum forcing in the wave components

(Fig. 6b) while the trough of the unstable steady state is almost in phase with

the trough found in the case with pure momentum forecing (Eg. 28).

Comparing the energetics of the two stable steady states (Fig. 9), one notices
that the zonal state has a much higher value of the total kinetic energy than
the blocked state, the difference being mostly in the zonal components. The
direction of the energy flow between zonal and eddy kinetic energy caused by

the orography is another significant difference between the two stable states.
In the zonal state, energy is transferred from the eddy components to the zonal
components through the aid of the orography and the high level of the zonal
energy is thus maintained. From Fig. 8 it may also be seen that in this case
there is a trough upstream of the orographic high and the mountain drag is
therefore negative. In the blocked state, the orography acts to transfer

energy in the other direction and the flow has arranged itself to pick up less
energy from the momentum forcing. In this case the mountain drag is positive
and thus the zonal flow over orography is generating waves. The efficiency of
‘the two stable flows in converting the energy given by the momentum forcing into
kinetic energy is thus different in the two stable cases. The difference arises
due to the competing effects of the momentum forcing and the orography. ' Through
the non-linearities of the system, this results in the possibility of having two

different stable flow configurations.

The unstable steady state is mostly driven by pure momentum forcing. AIn this
state the non-linear energy transfer is small and the wave is almost in phase
with the orography thus making the mountain drag small. The state closely
corresponds to the purely momentum forced steady state without mountains as

given by Eqg. (28).
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In the case where we have a momentum for01ng which is. 180 out ‘of phase with the
orographic forcing, the dlfference between the two stable steady states is not as
significant as in the prev1ous case. The top stable state in Fig. 10 is one in
which the trough generated by the momentum fOIClng and the lee trough of the
mountain have merged while the zonal current is fairly weak . The bottom flow
field is one in which the zonal current is stronger and the ridge over the low

in the orography, or ocean part, is well developed.

The energetics for this case (Fig. 11) shows that the part of the kinetic

energy transfer which is due to the orography is not very strong and its

direction and intensity is very similar in all three steady states. The non-
linear energy transfer due to flow-flow interactions, on the other hanq, is‘in
this case much more significant. In the top stable,‘Steady state in Fig. 10

there is a fairly strong energy transfer by flow-flow interactions from eddy
kinetic energy to zonal kinetic energy‘while'the two other steady states have

very weak flow-flow interactions and the energy transfer is in opposite directions.
From the energetics, one may therefore draw the conclusion:that thekdistinguishing
feature of this bifurcation is not the orography but rather the non-linearities

in the system glVlngjxlse to flow—flow interactions.

The physical significance of this case is not very clear as it corresponds to a
situatioa with a strong cyclonic vorticity source over the continents and a
strong zonal forcing. A cyclonic vorticity source over continents implies a
strong heat source over continents compared to oceans and this is mostly the case
during summers. Summer circulations are, however, weaker than winte; circulations

and they are, "in particular, not characterised by a strong zonal forCing.

4. DISCUSSION AND CONCLUSIONS

It has been demonstrated that an extension of the B-plane model studied by Cdv to
a spherical geometry does give similar bifurcation properties even though the
truncated equations are not the same due to the difference in geometry. If the
low order model flow is confined to one hemisphere only, orographic forcing and
zonal Newtonian forcing is not sufficient to force the model into multiple
equilibria for realistic mcuntain heights and zonal windspeeds. However, a
combination of mountains and zonally asymmetric momentum forcing may force the
flow into two different stable equilibria, one predominantly zonal and the other
with a more pronounced wave component. The phase and intensity of the asymmetric
Newtonian forcing suggests that this corresponds to a wintertime circulation with
strong heating over oceans and a fairly strong zonal flow. Examining the energet-
ics of the two stable equilibria, one finds that in the zonal state, there is an

energy transfer from the eddy components to the zonal flow through the effect of
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STABLE

UNSTABLE

STABLE

Flow fields for the three equilibria obtained when the wave momentum forcing is in phase with
the orography, which corresponds to vorticity sources over orographic lows. Full lines are
isolines for the streamfunction, dashed lines are isolines for the orography. Please note that
nes for the streamfunction are not the same in all three flow
fields. Regions with the orography above its mean value ('"land areas") are green, while areas
with the orography below its mean value ("oceans") are blue. Parameter values are the same as
in Fig. 7a, the three equilibria are those given by the intersections between the thin horizonta

line at uOE/E = 70 m/s and the curve for phase 0° in Fig. 7a.
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Fig. 9 Energetics of the three equilibria shown in Fig. 8. The total zomnal

and eddy kinetic energies are given in arbitrary energy units while
the energy flows are normalized with the totally dissipated energy.
For a description of the energy calculations, see Appendix II. .

29



STABLE

UNSTABLE

STABLE

Fig. 10 Same as Fig. 8 but for a phase difference between orography and wave
momentum forcing of 180° (vorticity sources over orographic highs).
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Fig. 11 Energetics of the flow fields shown in Fig. 10. For further
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the orography, while the "blocked" state has an energy transfer in the other
direction. In the unstable steady state, the non-linear energy transfer is
fairly weak. The orography may thus be seen to act as a tfiggering mechanism,
directing the basically Newtonianly forced flow into one or the other of the
stable states when the Newtonian forcing exceeds a certain critical value.

Comparing this mechanism to reality, one may reason as follows:

When the asymmetric heating is weak, the large-scale flow has only one possible
equilibrium state but, as heating over oceans and cooling over land areas
increases from autumn to winter, the atmosphere is driven into one of the two
stable and totally different flow types. Which one it chooses is crucially
dependent upon the initial state of the flow and the way in which the forcing
is changing in time. Once the atmosphere has reached.the "attractor basin" of
one of the stable states, it stays there until the forcing changes to drive it
away into some other "attractor basin". The predictability of the atmosphere

is thus low when the forcing is just above the critical value for a bifurcation
to occur, but once the flow has settled itself into one of the attractor basins,
the predictability increases. TIn the case of a blocked situation over the eastern
Atlantic Ocean, this feature has indeed been cbserved (Bengtsson, 1980) with a

numerical prediction model.

A comparison of the energetics derived for the two stable states (Fig. 9) in the
0° case with reality can be made'through the studies by Wiin Nielsen et al (1964,
1965). They examined Northern Hemisphere data for two winter months, January 1962
and 1963.

Fig. 12 shows the time averaged 700 mb circulation over the N. American -

Atlantic - W. Europe area for the two Januarys and the energetics taken from
Wiin-Nielsen (1965). January 1962 was a typical winter month with a predominantly
zonal circulation and the energetics show an energy transfer taking place from

the eddy to the zonal kinetic energy. January 1963, on the other hand, was a
typically "blocked" month with a stronger eddy flow and a kinetic enerqgy transfer

from the zonal to the eddy kinetic energy. In Wiin-Nielsen et al (1964) it was also
shown that the reversai of the energy transfer in January 1963 mostly took place

in wavenumbers two and three.

Whether this is due to the orography or not is an open question but there is a
striking similarity in the energetics between the observational study by
Wiin-Nielsen et al and the results obtained here for a low order barotropic model

with orographic and Newtonian forcing.
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In the case of a Newtonian forcing 180° out of phase with the orography (Fig. 10
and 11) it has not been possible to find observational studies verifying the

model results. This is most probably due to the fact that during summers the
zonally asymmetric heating is .weaker (Ashe 1979) and the bifurcation into multiple
equilibria is therefore not as clearly marked as in the winter case. It is also
well known that the zonal circulation is not very intense during summers and the

importance of the large-scale orography for the ultra-long waves thus decreases,

The comparison of results from this simple model with observations should, of
course, not be taken too seriocusly. The main purpose of this study is to examine a
plausible physical mechanism acting through the non-linearities of the governing

equation. The main shortcoming of the simple model is the severe truncation.

In the paper by CdV, it was however demonstrated that‘in a grid point model with
many more degrees of freedom, the stable equilibria found in the truncated

spectral model still existed. A natural continuation of this study is therefore
also to investigate numerically the possible existence of multiple steady states

in a more complete spectral model and this is planned to be done.

Another aspect of the low order model, which has not at all been dealt with here,
is the limiting properties of the trajectories in the six-dimensional phase space.
It could be that the "attractor basin" of one of the stable steady states in phase
space is so small that the probability of reaching it is very low. The limiting
properties are however sensitive to changes in the truncations and it is therefore
not felt to be a very important aspect of this low order model. The limiting prop-
erties should instead be dealt with in connection with the more complete spectral

model.

If the orography acts as a triggering mechanism, directing the flow into one or

the other of the stable steady states, it should be possible to find this in obser-
vational data by evaluation of the term J(¥,h) and its contribution to the energy
transfer between‘eddy and zonal kinetic energy. One would have to find some
objective method of defining a "blocked" and a "zonal" state to divide the data
into distinct groups and then ekamine the energetics of each group. Preferably
this data study should be made on a limited area to more easily identify the
blocking situation, the heating contrasts land/ocean and the orographic effects.
Tt is planned that a study of this type will be performed with data available at
‘ECMWF .
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LIST OF SYMBOLS

dimensional streamfunction
dimensional forecing streamfunction
dimensional wind vector
dimensional time

Coriolis parameter (20u)

ap
dt

pbressure
surface pressure
dimensional dissipation coefficient
vertical velocity
acceleration of gravity
density of assumed isothermal atmosphere
dimensional mountain height

; pO
scale height of 'the atmosphere (—)

L

angular velocity of the earth
radius of the earth
non-dimensional time
non-dimensional streamfunction
non-dimensional vorticity
non~dimensional vorticity forcing
non-dimensional dissipation rate
sing, where ¢ is latitude

longitude
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APPENDIX II

ENERGY CALCULATIONS

The energetics of the steady states, as shown in Figs. 9 and 11, are calculated

in the following way:

Total zonal kinetic energy KZ = 2(21102 + czz)
Total eddy kineti s o 2 YD) o,y
otal eddy kinetic energy K, =c,(x +v, c,(x, + ¥,
Generation of zonal kinetic energy G =4uu

z o oE

Generation of eddy kinetic energy G, = cl(xlExl + ylEyl)

E
Dissipation of zonal kinetic energy DZ = -EKZ
Dissipation of eddy kinetic energy DE = —EKE

Energy transfer between zonal and

eddy kinetic energies induced by

orography, : NL_.,, = 2h, [y1(251uO - b z) - yzcézz]
The non-linear energy transfer due to flow-flow interactions (NLflow)

is calculated as a residual.
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