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1. INTRODUCTION

The new approach to the problems of climate theory and long-range forecasting
developed by academician G.I. Marchuk a few yéars ago has attracted the general
attention of the meteorological community. This approach is based on the use of
the properties of the adjoint to the eguations of thermo and hydrodynamics

of the atmosphere and ocean.

This report is essentially a detailed commentary on one of the chapters from
Marchuk's book, "Numerical solution of the problems of atmosphere and ocean

dynamics", 1974, which, unfortunately, is not yet available in English.

The adjoint—éqﬁation technique of the hydro and thermo dynamics allows us to
construct functionals which represent the average, in space and time, of devia-
tions of temperature, precipitation and some other fields from their climatic
values. These functionals depend on the initial values and boundary conditions

of mathematical models describing the evolution of physical processes in the
atmosphexre, ocean and active layer of the soil. Here, the variables in the
expressions for the functionals have certain weights, which are determined by the '
solution of the adjoint problem. These solutions of the adjoint problems are the

influence functions for the particular regions and certain time intervals.

A preliminary analysis shows that, with the increase of the time interval, the
influence of the initial data decreases considerably. Then, after sufficient
time, the influence of the processes in the atmosphere and soil also diminishes
because they have comparatively short characteristic relaxation times. Eventually
the ocean comes to the fore as a main decisive determining factor in forming the
large scale motions and long lasting changes in the patterns of atmospheric

processes over a given region of the earth.

These conclusions were illustrated by the first and comparatively simple
numerical experiment based on climate and model data (G.I. Marchuk, Yu. N.Skiba,
1976) . It appears that the influence function representing the adjoint function
for the temperature calculated for the European part of the USSR for November has
a maximum value of 6 to 8 months before this month in the region where the Gulf
Stream originates. For Northern America, the region of origin of the Kuro-Shio
is essential along with the tropical part of the Pacific and the northern part of

the Indian Ocean.

Theése results formed the basis of the Soviet Union proposal for the international
long term research project aimed to study the processes of interaction between
the atmosphere and the ocean for the purposes of the development of climate theory

and long-range forecasting.



The adjoint equation technique gives the possibility of obtaining both qualitative
and quantitative assessments of the importance of different regions of the earth
for such.a research project. The expensive and limited resources for such a
programme might be used in the most effective way by concentrating them in the

regions of the most active interaction between the atmosphere and the ocean.

Such regions it seems are the regions of the birth of the powerful ocean currents,

upwelling regions and the regions of intensive oceanic convection.

In the last few years, scientists in the Siberian Computer Centre and in the
Hydrometcentre of USSR have carried out a number of projects directed to the
study of the possible applications of the adjoint-equations technique for a
broad class of meteorological problems from weather forecasting to the problems

of enviromment protection and rational usage of natural resources.

Since the review of these works goes beyond the scope of the present report, the
author gives just a list of publications, which the author cannot, of course,

pretend to be a complete one.

2. THE DERIVATION OF ADJOINT EQUATIONS AND SOME OF THE FUNCTIONALS

In this section we shall show, using simple examples, how one derives adjoint
equations, how one should solve them, what meaning they have and how, using them,
one may construct different functionals for the purposes of diagnosis and weather

forecasting.
First we need to introduce a few definitions.

Let us define the inner produce in the Hilbert space as follows..

n
(gh)y = = fg, b ap
i=1p
Here 95 and hi are components of vector functions g and h respectively, n is the
dimension of these vectors and D the spatial domain over which the equations of

thermo and hydrodynamics are integrated.

For the adjoint technique we shall need a more general definition of the inner

product:

1

(g,h)DxT = _ggi hi dp dt

s
o o

o]

Where T is a temporal domain, tO, t,, the interval of integration in time.
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Let us notice that in the spherical g-system of coordinates, the inner product has

the following form.

(g,h)D =
i

[ o =)

IR s a2 cosd 93 hi do dx d¢
loXxd

where 7 is the pressure at the earth's surface.

Let A represent an operator transforming the vector function h in the Hilbert
space into some new vector function belonging to the same space, and define the

*
adjoint of A, A ;, by

(g, 2n)_ = (ag, h)

Examplés

(a) Let us begin with the simplest case of a barotropic atmosphere:
g—:+u§—i+vg—;—fv+mg—i=o
%%-+ u %%,+ v %§-+ fu + RT §§-= 0 | (1)
—g—z—+%§=o

]

Here u and v are components of the velocity vector, & - the deviation of relative

"pressure" from the standard one, and T - the average témperature in the domain D.

Let D be a rectangle and on its boundaries periodicity conditions are prescribed.
' *

Let us now introduce the vector of the solution, ¢, the adjoint vector ¢ and

matrices A and B:

. A _f aaT
u u x 1 0 0
* * a
b= v ,¢=V* , A= £ A W , B = 0 1 0 ’
RTO RT® 3 3 0 0 0 O
LBX oy
where A = u jﬁ)+ v 2
ax oy
Now we can Qrite the system (1) in the operator form: \
3¢ - -
Bae v =0 b T (2)



Let us assume that the problem adjoint to (2) is
*
i+A¢=o (3)
Now, making use of the Lagrangian identity

* * %
B gr ¢ )pn = B o 1) pup (4)

* *
we shall derive expressions for B and A .

*
To this end, let us write the inner product (A¢,¢ )D in the form:

xT
t
* 1 *
B¢rd Vpor = [ ] ((Aw - £v + RT -—)u +
t D (5)
*
+ (fu + Av + RT gq’) v+ (£+g—§)RT¢ ) ap at

X

also we rewrite separately the expression

(6)

t

*

= f J (u L LA L )dD dat
« b 3% 3y 9x oY

(6)
tl
* *
[ [ (u %% u + v %%-u ) db dt =
tO D
tl'
u ¥ u ¥
= (Jayyuize dx+fdva§—yu dy) at =
tO y X X Y
©1 w 2 auu* 2w Bvu*
= f ( J dy (uu u ] -fu ox a&x)+f dx (vu u ] - f u 5 dy)} dat
t Y o) x X o y Y

In this expression
* 21T
uu u = vu u =0

o] o]

due to periodicity conditions on the boundary of D.



ty . o . .
Now, -f [ dy[ u %E;E_ dx dt = - [ [ dy [ (uu gz + uu %E) dx dat
tO y X tO y X
& ) t _—_—
-f [ axf u v dy dt = - [ [ dx [ (uv du uu éz) dy dt ;
© 0y 9x oy
X y t x y
o o
t1
* *
S (S ey S e Bax e+ ax S w S ) at =
tO y b4 X Yy
tl Ju 3
- J J ua (5§'+ 5%) dp dt = 0 ,
to D
since u and v satisfy the continuity equation in (1).
tl qu _* Ju ¥ tl Bu* Bu*
So, [ J lu—u +v—u)dddt=-J [ (u u-t v u) dp dt .
t D 9x oy © 0 oy :
o o
In the same way, we may show that
t
! gv ¥ ov _* tl v* Bv*
f J (u =V TV, v ydpdt=-/ [ (u v+ v 5—~'V) dp dt.
t D Y t D Y
o o
Hence,
t; t
1 * % 1 * * ) (7)
J J(huu +Avev) dddt=-f  [(Au -u+ Av -v) 4D dt
t D t D
o o
We can also write
t
1 * * tl * *
J (-fveu + fuv ) dpdt =S [ (fv *u - fu * v) 4D dt (8)
t D t D

@] o}

Integrating by parts the remainder of (5) and using periodicity conditions, we

get:
t t, .
L) * au
I fRTa—x ® dp dt = ~ [ RTfa ®dD dt
£ D €, D %



t1 . ‘ t1 v*
S Trr 2y apat=-7 rry e .5 apat
£ D ay t D %Y
o o
t
s * 1 20"
/] J——RT® dpdat= -f RT[ &—.u dD dt ,
ox 9%
t D t D
o o
t1 t1 *
v * _ 3 .
ffS—RT@ ap dt = - [ RTfa v db dt
t D %Y t p %
o o
Now, we have
tl *
(A *) = [ f(-Au*+fv*—RT 39 ) u +
97 ¢ )y ax
t D :
o
. * _* * *
+ (- fu -Av -RT &) v+ (- 2% _3Y y pnsy ap at =
oy ox )
* % *
= = - (9)
A ¢ ,¢ )DxT , where A A
Analogously
tl
30 % du ¥ BV * 22 30
(B =% 7 2 ) fD{: Gz © pEV *RT - 0) dtdp
o
o du Bv 22 30" ’ 30"
u v * 30 (10)
= - —— u + + — = —
I ¢ ye u o v+ RT 5t ¢ ) dt dp (B Y Q)DxT
D t
o
*
Where B = - B apart from the differences in the initial values for the direct
and adjoint problems.
*
If we have zero initial conditions for both problems B = -B.

We have thus shown that, for the direct problem (2), there is the corresponding

adjoint problem:

*
* 5 P * * (11)
a9 + = =
B ot A ¢ 0 .4 t=t1 d)1 !
* *
where B = ~-B, A = -A.
The sign " - " here stands for the fact that in the adjoint problem, the movement

and development of the processes is going in the opposite direction in space and

time than in the direct problem (2).



This means that while solving the problem (11) one must formulate initial

conditions on the right boundary of the time intexval (to, tl)'

We shall show later that the backward movement and evolution of the processes

in the adjoint problem has a profound physical and informational sense.

Let us write the direct and adjoint problems in operator form:

o¢ _ B
Bzt =0,¢ —t = ¢ (12)
*
89 o -0, o =0] 13
By AP =0, t=t, 1 (13)

* N
We shall now take the inner product cf (12) with ¢ and (13) with ¢ and subtract
the second from the first:
*
* 3¢

3¢ -
(Cb 'B_E)DXT + (¢r B at )DXT =0

0 * -0
_B'_E (¢ ’ B¢)DXT -

S, Bb) ap= [ (¢
[»] O D

1,Bd)l)dD,
,D

or, in component form:

J (u u* + v

* * *
d 1Y 1 vl)dD = £ (uO u + vy vo) dp (14)

Let us choose the initial conditions for the adjoint problem (13) as follows:

* .
¢ =¢ =9 : ' (15)
t=t1 t—t1 1

Then we arrive at the law of "conservation of kinetic energy"

J (u2 + v2) ap = [ (u2 + v2) dp (16)
D 1 1 D [¢] e}

or J E, dD = JE ab
D p °

The equality (16) expresses the fact also that there is the complete convertibility
of the solution for the problems (12) and (13). . This means that if one solves

the adjoint problem (13) with initial conditions (15), one arrives at the solution
which is exactly the same as initial data for the direct problem (12 . Of course,
while solving (13), one should use on each time step values of u and v for the
operator A as a solution of the direct problem and T must be the same constant in

both problems. 7



(b) Let us consider now the problem (2) with the addition of a turbulent

viscosity:
%%+Au—fv+R?g—i—a—i(—(u%)=o
g{—+Av+fu+RT%§-%(u%)=O
O
In this case
_A ) é%, ) g% . gi_
A= £ A—%u:—y aa_y

Let us obtain the system adjoint to the system of equations (17} using the
technique described above. Since the only difference from problem (2) now is
with the turbulence terms, we shall follow the transformations of one of them in

the inner product (5)

27 *

] ou * _ _ . du * du du _
[ox W) w @x=-ugow | e/ 0 ugtax =
X be

* 27 * *
_ . Bu 3 3u _ 9 ou
- 3% I f 3% U 3% u dx = {{ 9% (u 3% ) u dx
Analogously,
% *
3 ov 0 ov
- — _ = - —_— (o)
£ 2y (u 2y ) v dy g 3y (u oy ) vady

We have thus seen that in the case of the system with viscosity described by the
turbulent terms having second derivatives these terms do no change sign while we
derive the formulae for the adjoint problem. This is due to the fact that we

have employed integration by parts twice.

*
This means, in this case, A # -A.



Indeed, turbulent terms in the equations describe diffusion and therefore they

must have the same sign independent of the direction of the processes in time

and space.

*
The operator A for the problem adjoint to (2) has the form:

I 5
A X Mk £ T ex
s a0 3
B o= £ h-5y¥ay dy
9 3
X 9y 0

Up to this point, while deriving the formulae for the adjoint equations, we

have enjoyed the convenience of periodicity conditions on the boundaries. Let

us now make a next step and analyse a more complicated baroclinic problem which

has derivatives along the vertical coordinate.

(c) We shall write the system of equations for the atmosphere in adiabatic and

guasi-stationary approximations in the p-coordinate system:

Ju 30 _
T + Au fv + % 0
3V 30 _
at+1\V+fu+8y——0
EE-I-B—T:O

ap p

du 3V _ dw _
X 3y op

T R =
—a—+AT———Tw=O
ot c p
p
_ 3 J . ] =
Here A = u — + v —+py— , and T = const.
ox oy op

*
Let us introduce again the vectors ¢ and ¢ and the matrices A and

— - — — — — —

* 0
u u A -f 0 '5; 0 10
* £ 0 G 0 01
v v A —
oy
R - 3 R -
b =|w| ¢ =lw , A= 0 0 0 5 b B =[00
* 0 3 0
o) [0} o —5§- D 0 2 00
* -R P
LT T 0 0 — 0 —-—AJ 00
— - L P ’-I-‘ L.

(18)




We add boundary conditions along p to the boundary conditions along horizontal

coordinates:

(19)

Scrutinising the structure of the operator A and using the experience acquired

in deriving the adjoint equations, we can show that the adjoint operation has

the form
S T
90X
- F -4 0 -2 0
oy
2" = o 0 0 -2 _R
op p
5 5 3
-0 9 _ 2 0
X 3y 5p 0
C
o o0 R o --2a
L P T
*
i.e. A = -A.

Let us write the problem (18) and its adjoint in the operator form:

9% =

BLL+ag=0 (20)
3 X

-B -BT— + A q) =0 (21)

with
(22)

*
We shall take the inner product of (20) with ¢ , (21) with ¢ and subtract the

second from the first:

* *
(B¢1, ¢1)D = (B¢O, ¢O)D ; ©Or in component form:

T*)d f * *_*_fP_ *d
1 71 1 1 71 D= (uouo + vovo - TOTO) D

‘ * « C
J (u, u, +v vy +-B ¢
D T D T

(23)

10



*
Let us set u1 = ul( 1 17 1 1

1,2, 2 % 2
and define the total energy: T = §~(u + v o+ f?-T Y ;

then [ ﬂldD =f ﬂodD ,
D D

and we have arrived at the law of total energy conservation.

* * * T
Let us now set U = o, vy = 0 and T1 = § (x - X+ ¥~ Yy P= po) (24)
p
*
This means that Tl is different from zero just at the point with the coordinates
(Xo' Yor po). Then from (23) we have the expression for the temperature at the
given point of space (xo, Yy po) at the moment t1:
* * Cp *
T, (x,y,p)=J(u u +v v +-=T T)dD (25)
1 o' "o "o b o o o o T o o

Having set the initial values (24) for the adjoint problem (21), by this act

from the infinity of possible solutions ¢* we have picked up the only one ¢;
which describes the process of propagation and evolution of the signal from the
point (xo, Yor po) with the velocities equal to in value but opposite in direc-
tion to those we have cobtained as a result of solution of the. direct problem (20).

The evolution itself in this case is backward in time.

As a result of the solution of the adjoint problem (21) with the boundary
conditions (22) and initial conditions (24), we have found the time and space
distribution of the field of the vector function ¢* (x, v, p, t).

When we use in (25) values of the components of the vector-function ¢* at the
moment of time to, we have the expression for the temperature at the given point
in space through the initial fields of uo, Vo’ To weighted with the correspond-

* * *
ing weights u v T .
g g o' o' o

* * *
It may happen that, in certain regions of the domain D,uo, Vor TO reach maximum
values and then these regions will give maximum input into the forming of
temperature at the point (xo, yb, po) at the moment of time tl' On the other

*

* *
hand in -some other regions uo, VO, TO may have minimal values and in this case
the information about initial fields u_ vo, To from such regions has no real

value.

*
Hence we arrive at the main conclusion: the solution of the adjoint problem ¢

has a sense of the value of the information.

11



(d) We shall now make the last step in one consideration of the simplest

examples, and proceed with the study of the diabatic problem:

Ju Lo _
3t + Au - fv + v uAu = 0
v 30
— + —_— - =
ot Av + fu + 3y AV = 0
LA ~ (26)
°%p P :
du v ou
X oy 9 0
c c ol
TPS—T+TPAT—B-N——_E(53—\)§—T+ o AT =0
T T P T P
With boundary conditions in p:
oT
w 0 2p 0 at p
(27)
—_— E— -— =
w=20 i us-(T TS) at p P

Where Ts is a temperature of the underlaying surface, and us is a heat transfer

coefficient.

The operator A for this problem is as follows:

2
A - uA ~-f 0 B_X 0
£ A - pA 0 2 0
u 5y
A= 0 0 0 _a~. B
ap p
) 0 9
X oy ap 0 0
C
R 3 9
0 0 - = o B u Zv=-
o z ( %D D uTA)

The problem (26) differs from the previous adiabatic problem (18) only through
the additional term in the thermodynamic equation, describing the vertical

turbulent heat flux in the atmosphere.

12



Let us follow the transformations of this particular term in the inner product:

5 3T * * a7 P 3T
[ ==y S=-+p dp=T VvV = I - [ = .9 .5— dp-=
' 3 p) 3
o 3p © 8p P D p p
* ar” P ) ar”
T T
= - N - - TV 2 T
Tp p%s (Tp Tg) 3p L+ fp 5p ¥ op d

Now it is time to make a choice for the boundary conditions for the adjoint

problem:
*
oT
— =0 at =0
op P
* . (28)
aT _ * _
D = uST at p=P
Then
5 ar * 5 o 1
T
—_y — dp = — Vv +— T dp +R
I oV T P il B p ’
P P
where the residual R1 is:
1 C ok * *
RO=-T v a (T -T)+T v & T =v_0o T T (29)
P p s b S P p 5 s P s s p
- A-uA £ 0 -2 0 ]
)34
- f —A-pA 0 - 0
Y
* 3 R
= 0 0 0 - == - —
A P P
_ 9 _ 2 _ 9 0 0
oxX aY 2P
c
0 0 R 0 L (- 2 ji--uA )
L P T op P .

Now, when we have non-homogeneous boundary conditions, the Lagrangian identity is

satisfied with the residual R1

* _ * *
(B ¢r ¢ Mppp = B 0 v d)pg ¥

13



This is a mathematical statement of the fact that the system of equations (26)
describes an unclosed physical system: there is exchange of energy between the
atmosphere and underlaying surface in this system. Naturally, the law of energy

conserxrvation in this case is not valid any more.

Let us write the problem (26) and corresponding adjoint problem in operator form

and continue our analysis:

9% - _ ,
B3t A =0 ¢t=to ¢o (30)
-B Nt +aA ¢ =0, ¢t=t1 = ¢,1 ‘ (31)

*
The operators A and A include the description of the boundary conditions.

*
Take the inner product of (30) with ¢ and (31) with ¢ and subtract the second

from the first:

* * CP *
(u1 uy +‘V1 v, + ?E-Tl Tl) dap =

v Ban)

C

* * *
=f (u u +v. v +-L2TT) a +Rr
o O o O - O O

D T

where 1

c *

p
R= (Vv —= oy TS T ds dt
s T p

= ot

[e]

Now, the choice of initial conditions for the adjoint problem (31) is as

follows:

* * * T R A * O 33
u, = 0, vy = 0, T1 = E;E-lf X,y € G,otherwise T1 = (33)

where I is the area of the region G on the surface S which is interesting for us

in some respect.

Let us be interested in the average value of the temperature in the region G at

the moment of time t1 Towe then obtain from (32):
t1
e * * Cp * Cp *
T, = (u v v = Tradd ) v e TT dsdt (34)
D T t, s P P

14



The expression (34) has a clear physical sense: the average temperature f? over

the surface in the region G is formed with the initial data Ujr Voo TO with the
* * * '

weights uO ,‘vo, To and with interaction between the atmosphere and the under-

*
laying surface on the time interval (to, tl) with the weight TP (x, v, t).

Since the equation (31) has turbulence viscosity terms, one may expect that, if
* * *

the time interval is big enough, u, o vy and TO will dissipate eventually and

(34) will be left with only the term describing interaction of atmosphere with

the underlaying surface.

As a rough approximation, one can believe o, over the ocean is much bigger than
over the continents. Then in the long run, (34) describes mostly the input from

the oceans into the forming of the average temperature EG

1 over the given region

G at the moment of time t = tl'

One can arrive at the expression (34) in a slightly different way:

* * * 0
Let us put u1 = V1 = T1 = ’

but change boundary condition (28):

BT * *
=qg T + £ at p =P (35)
op s p
where
* T * .
£f = e v § (t - tl) for x, vy € G, and £ = 0 otherwise
PP

Then the residual R1 in (29) has the form:

we obtain the same expression (34) for E?.

. ‘
This means it is all the same if one sets up T1 at the initial moment t1 on the
surface G or puts zero initial values but has an instantaneous source in the

_ boundary condition (35).

If we are interested not only in the average temperature over given region G but
also in the average value over the time interval (t1 - t, tl)’ we should put

*
the source £ in the form:

* *
£ = £ (x,y)- n (t) , X,y € G, te [t1 - At, tl] ,

15



* *
where the only condition we impose on the functions £ (x,y) and n (t) is the

normalizing condition:

f E* (XIY) ds = 11 f T]* (t) dat = 1.
G t,-At

Then in (34) Ef will be replaced by

'I‘G=f J T ds dt
t,-At G
1
(e) Now we have enough experience with the adjoint egquation technique

to proceed with some generalisations.

Consider the system of equations describing the climate of the atmosphere and

the corresponding adjoint system of equations.

3% _

B oo+ ap = £

* (36)
_ 39 * k _
B o + A ¢ 0

We have shown already that
* * _ * .

(Bd)lr ¢1)D = (B ¢O' ¢ O)D - (¢J 'f)DXT + R 7 (37)

where the residual R appears because of the nonhomogeneous boundary conditions

and describes the sources and sinks of energy in the climatic system.

Next, write the system of equations for the real atmosphere and join to this

system the adjoint problem for the climate from (36)

!
_alq)— . v ] _ 1
B or A 4 £
aq)* * *
- —_—l + =
B ot A ¢ 0

Here
¥ 1 )

6 =¢ + 3¢, A =A+8n, £ = f + §F,

8¢, 8A, 8f are the deviations from the climate and are not necessarily small.

Indeed, they may well be of the same order as the climate values of ¢ and £

themselves.

16



*
Taking the inner product of the first equation with ¢ and the second with ¢i

we obtain:

*® * L A 3 * % _ LI ]
(Béyrdp)y = Bord )y + (B d 0 ) p = (B0 Yoer = (B 19 Dppr

B, + 5¢9,¢I)D - Bl + 860, o)+ (8 + 8R) (4 + 80, 8 )y =

+ (£ 460, ") .

DxT

* *
= @ (6 +89) o

. Making use of (37) we have:
* * * ' * B
(B (Sq‘)lr ¢1)D - (B (Sd)ol d)O)D + (A (S(bl ¢ )DXT + (6A d’ ’ CP )DXT -

* * *
= (A ¢, 6¢)DxT + (8£, ¢ )DxT

* * %
It is evident that (& 8¢, ¢ ) (A ¢ . = §R ,

DT 89) pyep

where SR is a residual describing the deviations of the sources and sinks of

energy from their climatic values.

Hence we finally arrive at:

t
* * 1 1 *
(B 8¢ys ¢y = (B S s ¢ ) + [ say , ¢ )y dt =
tO
t1 .
= [ (S8f, ¢ )D dt + 6R (38)
t
(o]

In this expression, ¢* is the result of the solution of the adjoint climatic
problem. In general, the operator A can encompass a description not only of
atmospheric processes but also of those in the ocean, continents and upper and
boundary layers of the atmosphere. The more complete climate information used

*
while calculating ¢ the more successful will be the applications of: (38).

*
The influence functions ¢ are calculated with use of climate information only
once but for every given region and time of year separately. The sizes of such
regions and the length of time intervals are chosen to be in correspondence with

the goals for which these influence functions are calculated.

17



The longer the lead time of the forecast, the bigger the time interval. For
example, if one has in mind the forecast for a season, one should use the
information covering the whole of a year, or 6-8 months at least, and the time
resolution must be not less than one month. Unfortunately, in most cases, we

have to content ourselves with climate information on a monthly basis.

The choice of regions for which to calculate the influence functions is an
interesting and important separate problem. Such regions should be of certain
optimal sizes and react to external forcings as a climatic whole. If one has
seasonal forecasts in mind, one could separate such regions as Western Europe,
Eastern Europe, the European part of USSR, South-West Siberia and Northern
Kazackstan, USA, India or Australia. But of course some objective criteria

must be developed in order to define the boundaries of such regions.

In this case, the calculation of the influence functions, which requires heavy
computer resources, is carried out only once for each region and every season
of a year using the climatic data. The results might be stored and archived on
magnetic tapes. Essentially it is one of the ways to develop and archive

climate information.

Having such information, one may construct many different functionals, such as
the anomalies of temperature, precipitation and pressure over certain regions.
It is essential that the calculation of such functionals, using formulae of the
kind (38), should require much smaller computer facilities than solution of
the direct and adjoint problems (36) and can be carried out on very modest

computers in regional weather centres.

Of course we face many difficult problems to solve; for instance, the separa-

tion of the operator 8A is not at all trivial.

The bigger the time interval (to, tl)’ the more important is the role played by
the ocean. Therefore, it is necessary to have reliable and representative
oceanographic information on the World Ocean, at any rate on a monthly basis.
We need a mathematical model of the World Ocean on the same level as the best
contemporary atmospheric models. More than this, it is necessary to have

coupled models of the Atmosphere - Ocean - Continent interaction.
General perturbation theory has brought us to the result (38) and this result

might be effectively used for diagnostic researches, for the assessments of the

skill of the numerical models used for medium and long-range forecasting.
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The above approach may be a useful basis when one plans the development of the
World Weather Watch System and especially while planning global atmospheric and

oceanographic experiments.

This new approach opens the possibility of assimilating and making use of all

the stored information when one solves the problems of long and extra-long

range forecasting. Moreover, there are some possibilities for decreasing the
influence of errors in the initial fields and some systematic errors in numerical

models using this approach.

In order to use (38) for the purposes of long-range forecasting, it is necessary
to develop some technique for the assessment of the deviations of the energy
sources and sinks from their climatic values over the forecast time interval.
Probably, the hopes here may be connected with the use of some statistical

methods and satellite information on the World Ocean and planetary cloudiness.
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