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ABSTRACT

Numerical experiments on real data were made with a finite
difference scheme in advective form which conserved energy
and which also conserved enstrophy for horizontal non
divergent flow. Within a few days in a high resolution
integration the strength of the jets decreased catastrophi-

cally with a large increase in short wave kinetic energy.

An analysis is made of the finite difference scheme, which
shows that, when linearised about a non zero uniform flow,
the finite difference equations do not conserve momentum
and so do not have an energy theorem. Unstable free modes
exist for each internal vertical mode while the external
mode is stable. Thus a one-level analysis of the finite
difference scheme would not reveal the problem. The growth
rates 1) are zero if the flow is non-rotating, 2) are
linearly proportional to the magnitude of the basic flow,
3) bear a roughly inverse relationship to the gravity speed
of the vertical modes and 4) increase with decreasing grid

size.

For a nine level model with a resolution of 200 km the e-
folding time for the fastest growing disturbance is of the

order of 6 hours when the mean flow velocity is 40 m/s.

Integrations with a non linear model in a simple situation
show that the overall energy constraint is satisfied by a

re-~distribution of mass.




1. Introduction

The European Centre for Medium Range Weather Forecasts is
developing a model suitable for medium range weather fore-
casts out to ten days. Two horizontal finite difference
formulations of the model, originally due to Sadourny, have
been described by Burridge and Haseler (1977) for the
Arakawa "C" grid. One formulation has the property that it
conserves the quantity Z/p*, where Z is the vertical compon-
ent of absolute vorticity, for horizontal non-divergent flow
in a one-level model. This scheme has been published in
Sadourny (1975). The second scheme described by Burridge and
Haseler is also due to Sadourny and conserves Z/p* under the
same conditions; it further conserves energy in a general
flow. We shall refer to these schemes as the E scheme (for
the first) and the EE scheme (for the second).

The EE scheme was used in a real data integration in a high
resolution (Ax = A8 = (7n/2)/48) model using both nine and
fifteen levels in the vertical. After about two and a half
days there was a dramatic collapse of the jets in the model
with an accompanying rapid increase in short wave energy in
the absence of dissipation. As a result, the integration
lost all predictive value. This collapse did not occur

when the E scheme was used. We present an analysis of the
collapse which shows that non-conservation of momentum in

the linearised equations in the EE scheme provides a spurious
energy source in the linearised equations. Short wave-lengths
can use this spuriousenergy source to grow exponentially

with typical e-folding times of six hours. In simplified
experiments to be described below, the overall energy

constraint is satisfied by a redistribution of mass.
In Section 2 we describe the symptoms of the problem.
In Section 3 we present a qualitative analysis of the problemn,

in a one dimensional situation. This analysis is oversimplified

but within its limitations it capture the main features of




the results from the more complete analysis presented in
Section 4.

In Section 5 we describe some simple integrations and compare
them with the analytical results from Section 4. In
Section 6 we summarise and make some suggestions for further

work.

2. Symptoms of the problem

Fig. 1 shows the 500 mb height field at days 2 and 3 in a
nine-level integration from real data using the EE scheme and
with no physical parameterisations. The field is truncated

at zonal wave number twenty. Between the two days there has
been a dramatic loss of intensity in the jets over the

Pacific and Western Europe. If the integration is continued
the fields degenerate into small scale noise by day seven.
Integrations with either the dry convective adjustment used

by Smagorinsky et al (1965) or with a complete set of physical
parameterisations for radiation, the planetary boundarylayer,
dry convection, moist convection, large scale rain and internal
diffusion showed the same collapse of the jets between day 2
and 3. Fig. 2 shows the evolution of the total kinetic

energy in these three integrations. 1In the adiabatic integra-
tion the kinetic energy increases steadily with time. 1In the
run with just the dry convection the kinetic energy stays

more or less constant. In the third run the kinetic energy
decreases steadily. This suggests that the model formulation
is generating small scale noise which is exacerbated by
convective overturning in the absence of the dry convection.
When internal dissipation is included as well as the dry
convection parameterisation this small scale noise is damped

and we see the effect of the loss of energy in the longer waves.

Figs. 3 and 4 show the flow at days 3 and 4 in runs with the
EE scheme (right half of frame) with the full suite of physical
parameterisations and a similar run with the E scheme

( left half of frame ). There are no problems with the



E scheme; this integration continues to day 10 in a
reasonable fashion. Both sets of fields have been truncated

at zonal wave number twenty.

3. Qualitative analysis with a one level model

Consider the form of the shallow water equations on which

both the E and EE schemes are based, viz.

au _ 9
22 = Zv - o3 (6+E) (1)
oV _ 3
3f - CZu - 5§(¢+E) (2)
%% = -v.4U U = (iu+jv) (3)

here 2 = f+z, f is the coriolis parameter, ¢ the relative

2

vorticity E is (u +v2)/2 and the rest of the notation is

standard.
These equations may be combined to form an energy theorem
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Let us now linearise these equations about the following

basic state
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In the v equation (equation 6) the terms -Z'u - g% au’

t
cancel since -z' = 4
3y
max(¢1)

If we assume that —5 << 1 then the term in ¢1 in the
continuity equation mgy be neglected.
This assumption leads to the following simple system
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The energy theorem for this system is then
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Consider the EE finite difference form of the non-linear
terms Zu and Zv in equations (1,2,3) as illustrated in
Figs. 5a, 5b.

If we assume the same basic state as before and again
neglect the term in ¢1, then the linearised form of the

finite difference equations are

1
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Here j-1, j, j+1 refer to the northern centre and southern
latitude.

The terms corresponding to -~ f% (225_

!

1+Szj+2Zj+1)+uZJ
in the v equation cancel in the continuous case. In the

finite difference case they give

u
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These do not cancel and in the special case of a three grid

wave (uj_2=uj+1) the terms combine to give
a I TR
- iy (—uj_1+uj) = -3 Zj (17)

For the rest of this qualitative analysis we concentrate

on the special case of the three grid wave.

If we assume solutions proportional to exp(igjay).,L = # gzy
then equations 12, 13,14 become for a three grid wave
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These equations may be combined into the following equation
for v'

52y 2.2 292 fUrA

S = - (71 Hv -1 (21)
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If we look for solutions proportional to eXtthen the

dispersion relation is




so that ) is complex. Without loss of generality we may
take ¢ to be positive so that AZ lies in the lower left hand
quadrant of the complex plane. Hence from Fig. 6 we see
that one root has positive real part and so there is an
exponentially growing solution. For 02 sufficiently large,

we see that the real part of this root is given by

f
A = =
1 (23)

The e-folding times corresponding to the solutions of(22)
with positive real part are shown in Fig. 7 for u = 40 ms*1
and £ = 1.1 x 10% s‘l, for a range of values of ¢ and aAy.
We see that the growth rate increases with decreasing c
and with decreasing Ay. At this point we reiterate that

the analysis is merely suggestive because of the neglect

of the term in ¢1. Large values of U correspond to large
values of ¢1. The combination of small ¢ and large u may
therefore imply negative depth in the basic state. Such a
state of affairs is physically unrealistic. 1In fact
extensive testing of the EE scheme on the shallow water
equations showed no indication of trouble (D.M. Burridge,
personal communication). Nevertheless the tentative
deductions that may be drawn from (23) are verified in the
more complete analysis to be given below. These deductions
are that a) the occurrence of instability requires that f
be non zero, b) that the growth rate increases with
increasing u, c¢) that the fastest growth will occur for the
smallest values of ¢ in a multilevel model. Since in a
multilevel model the smallest value of c corresponds to

the mode with highest vertical wave number we expect the

perturbations to have a two grid structure in the vertical.

At this point we may recall that in the E model the term Zu

is written —ZX 4%Y. Hence the term Z'4 has the finite
difference expression —(ﬁzj), when g% = 0 and so it cancels
exactly the termuﬁyﬁu'. Thus the linearised equations with

this finite difference scheme have neither spurious momentum

nor spurious energy sources.



4. Analysis for a multilevel model

We consider the primitive equations in sigma coordinates.

We suppose that in the basic state the temperature is iso-

thermal, with temperature TQ, and the uniform zonal flow u

is balanced by a meridional pressure gradient 5*(y). We

linearise about this basic state and consider perturbations
. 9 _

for which X 0.

The finite difference equations and the notations may be

found in Burridge and Haseler (1977). The derivation of the

perturbation equations is straightforward.

As presented by Burridge and Haseler the finite difference
scheme for the rotation terms applies to[(ﬁiu)(z/ﬁ*xy)] and
[ (B%v)(z/P%Y) ]. It was found in the nonlinear model dis-
cussed later that the instability was not affected by these
terms in p*and so we present here the equations and results
for the slightly simpler scheme for [uZ]| and [vZ]. The
linearised equations are then
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In equation (27) we have used the following linearisation

for 1In(py,)

(B, + Phy) = (Ip,); + In (1 +p /By ) m 10Dy5 + Ply/Puy

In equations (24) - (27), K is the total number of levels,
j=-1, j, j+1 indicate rows in the meridional direction. It
remains only to specify boundary conditions. For the
analytic calculation we require that the solution be periodic
with period NAy. This simplifies the calculation. Thus we

have (3k+1)N equations for (3k+1)N unknowns.

The problem could be much simplified if it were separable.
This is not the case because of the variation of the mean

pressure field.



We therefore write the problem in the form

QlQa
b

= AX (28)

where X is a column vector of all the perturbation quantities
and the matrix A contains the dependencies on the parameters
of the problem. The eigenvalues of A give the frequencies

of the free modes of the problem and the eigenfunctions give
the structure of the free modes. The eigenvalues and eigen-
functions were calculated using routines from the NAG

library.

Of the (3k+1)N solutions, N will have zero frequencies
corresponding to steady state solutions. A further kN

will also have zero frequency corresponding to the Rossby
wave solutions. These are of course forbidden by'either

of our assumptions f = constant and -2 = 0. The remaining

3 X
2kN solutions will correspond to gravity waves.

We would now like to identify the vertical mode to which
each of these frequencies corresponds. For our 5 level
model the gravity wave speeds for a resting basic state
were 312.32, 143.4, 56.85, 26.07, 10.98 m/s. Using the
ratiosof these speeds to each other in an inspection of
the eigenfrequencies of (28) it was possible to identify
unambiguously the solutions corresponding to each mode in
the vertical. Each vertical mode has N frequencies of
positive sign and N frequencies of negative sign. The
difference in sign of the frequency corresponds to a phase
shift of half a wave length (or of northward and southward
phase velocity). The N frequencies of one sign correspond

to the N degrees of freedom in the separable problem.

The analysis of the previous section dealt only with the
case N=3. lowever it is clear that the non-cancellation

will occur for any value of N23. We have calculated the
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eigenvalues and the fastest growing eigenfunction for the
following range of situations:

a) 2 equally spaced levels 3<N<25
b) 5 equally spaced levels 3<N<12

c) 9 levels as used by Smagorinsky et al (1975) 3< N<8.

The solutions for N = 3,4 were quite typical of the unstable

modes.

As N increased eigenfrequencies corresponding to N = 3(or 4)
were always found when N was a multiple of 3 (or 4). They
were not always the fastest growing mode but the structure
of the fastest growing mode was always quite similar. For
example when N = 8 (or N = 6) the fastest growing mode had
a structure very close to the solution for N = 4 (or N = 3)
in one half of the domain and was precisely out of phase

in the other half. The differences in growth rate of the
fastest growing mode for N = 4 and N = 8 (or N = 3 and N = 6)
was of the order of a few percent. For this reason we
confine ourselves to the discussion of the structures of

the unstable modes to the cases N = 3 or N = 4.

A striking feature of the results was that for each vertical
mode there were exponentially growing free solutions,

except for the external mode which was always neutral.

As expected, the most rapidly growing mode was the highest
internal mode. As the vertical wave length decreased the
growth rate decreased, as expected. TFigs. 8, 9 show the
dependence of the growth rate of the fastest growing modes
corresponding to each internal mode for N = 3, N = 4 as u
is varied from 0 to 40 m/sec, in a model with five equally
spaced levels and Ay = 100 km. The growth rate is almost
exactly linear in U. At U = 40 m/sec the e-folding times

in this model are of the order of 6 hours.
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In Fig. 10 we show the variation of growth rate with ay for
the fastest growing mode in two models, one with 5 equally
spaced levels and one with 9 levels as in the GFDL model
referred to earlier. 1In both cases we find a marked variat-
ion of growth rate with horizontal grid size. The nine

level model has larger growth rates and more sensitivity

to Ay. The slowest moving gravity wave in the nine level
model has a phase speed of 2 m/sec as compared to 10.58 m/sec
in the five level model. 1In particular we note that the
e-folding time decreases by a factor of two from 12 hours

to 6 hours in the nine level model as Ay is changed from

400 km to 200 km. This is consistent with the rapid decay
of the jets in the high resolution model compared to the
much slower decay in a model with a resolution of 3.750,

the highest resolution previously tested. In the latter
case the decay of the jets over a period of several days

had been ascribed the coarse horizontal resolution. In

Figs. 11 and 12 we show the structures of the most unstable
mode for N = 3, N = 4 in the 5-level model with u = 40 m/sec.
In each case there are four zero crossings in the v-field so

that we do indeed have the highest vertical mode.

The energy budget of the linearised perturbations is

outlined in the next section.

Since the terms involving f in the equations for u' and v'
would cancel exactly in the absence of the remaining terms

it is clear that the energy source for the perturbations
lies in the terms - z'u - ﬁ% uu' which cancel in the
continuous case.

5. Nonlinear integrations

In this section we present some results on integrations with
a full model for the simple initial states discussed earlier.
The model has been described by Kgllberg (1977). The flow

is in a channel on an f-plane between rigid walls and
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variations in the east-west direction are suppressed.
The presence of the boundaries at the north and south
might be thought to weaken the relevance of the analysis
of Section 4, which assumed periodicity in the north

south; this proves not to be the case.

The integrations were made with a model which had five
equally spaced levels in the vertical and 32 points in the
north south with a grid size of 100 km. The initial state
consisted of an isothermal atmosphere with a uniform zonal
flow of 40 m/s at all levels. The zonal flow was balanced
by a meridional pressure gradient. To this was added a
perturbation of 1 m/sec in the v-field. The integration
proceeded without any significant features for two days.
On day three we began to see a significant distortion of
the zonal flow. The wind field on day 3 is shown in

Fig. 13 for the levels 4 and 5 (700 mb and 900 mb). There
are several bands of convergence and divergence at each
level and a close inspection shows that the convergences
and divergences have opposite signs between layers. The
dominant wave number appears to be 4. This presumably

is related to the number of points in the grid.

Fig. 14 shows the corresponding picture for day 4. We see
that the zonal flow has been completely disrupted. The
integration, which should have preserved a zonal flow of

40 m/sec with some small perturbations, has gone completely

awry with easterlies and westerlies in excess of 60 m/sec.

A plot of the evolution of the rms divergence field in the
period day three to four shows that the divergence is
growing exponentially in time with an estimated e-folding
time of 6.46 hours. The calculated e-folding time for a
disturbance on this flow is 6.64 hours, if the north south
periodicity is 4 grid points, and is 6.42 hours if the
north south periodicity is 8 grid points. The agreement in

the structure and growth rate of the disturbance with the
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analytic calculation is sufficiently close to enable one to
conclude that the analytic calculation has captured the

main features of the disturbance in the model.

From the analytic results we could calculate the contribu-
tions of the fterms in pé, u', T to the v energy and the
term in v' to the growth in the u' energy. In the equation
for (v’)z the surface pressure term contributed zero and
the terms in u', T' were in the ratio .52 to .26 with the
contribution from the T'term negative, implying that the
combination of the perturbation geopotential term and the
term in RT' é§ Tnps was tending to inhibit the growth.
The term in u' in the (v')2 equation as compared with the
term in v' in the (u')2 equation was .52 to .02. Clearly
then the source of the energy for the perturbation is the
non-cancellation of the terms - Z'ﬁ-—$§ uu' as discussed

earlier.

The non-linear integrations conserved total energy and the
mean temperature was essentially constant during the course
of the integration. However, the surface pressure field was
changed radically. The initial north south pressure gradient
gave surface pressure on the northern boundary of 920 mb
and 1090 mb on the southern boundary. By day five the
surface pressure field consisted of a uniform value of
1000 mb everywhere on which were superimposed variations
of short wave length of the order of 25 mb. Thus energy

conservation was ensured by a redistribution of mass.

6. Summary and conclusions

The energy enstrophy-conserving finite difference in
advective form described earlier gave rise to a dramatic
destruction of the jet streams when used in an integration
on real data. The source of the problem has been identified
as a non-conservation of momentum in the linearised

equations. Integrations with a closely related enstrophy
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conserving scheme give reasonable results in a real data
forecast. The linearised equations for this latter scheme
do conserve momentum. The problem of non-conservation of
momentum in the linearised equations does not arise in an
energy enstrophy conserving scheme written in flux form

such as that described by Arakawa and Lamb (1977). However,
a semi-implicit time scheme is much easier to implement

with the equations in advective form rather than flux form.
For the immediate future we shall use the enstrophy
conserving scheme in our forecast experiments. Renner
(personal communication) has proposed a re-definition of the
term VE of the mass fluxes which eliminates the non-cancella-
tion in the linearised equations. This proposal is being
tested.

Some further aspects of the results are worth commenting on.
Clearly a study of the linearised energetics of a finite
difference scheme is of importance before using the scheme

in a full model. 1In the present case the overall constraint
of energy conservation was of little relevance for the growth
of the instability. The dynamics of the disturbance is

essentially linear.

Secondly we have here a demonstration of the limitations of
one-level models for testing of finite difference schemes.
In the present case the external mode is stable while the
internal modes are all unstable, with largest growth rates
for the highest internal modes. Since the external mode is
stable, a one-level model will suggest that the scheme is
stable when in fact is gives unstable results in a multi-

level model.
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5a TFormulation of the term [ZV].
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Fig. 5b Formulation of

the term

] .
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Fig. 6 Schematic of the position on the complex
plane of )\2 and its two roots >\1 >\2 where

22 is given by (“0) with & > 0.
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integration in an f-plane channel. The length of the vectors on the-

boundary corresponds to 40 ms—1.
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