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The prediction of mesoscale cyclonic development in the lee of
mountain barriers is a problem area which has not benefited from
advances in computer and modeling technology during the past decade.

A numerical model capable of simulating such disturbances requires in
some geographical areas a horizontal mesh size of 50-100 km, a time
step on the order of one minute (explicit) and at least 20 levels in
the vertical (if aspect ratio arguments linking horizontal to vertical
grid spacing are applicable). Economic considerations prohibit this
type of grid layout on the planetary wave scale of several thousand
kilometers. A practical alternative is to use a fine-mesh overlay on
an otherwise coarse-mesh model in the vicinity of the mountain barrier.

Numerical stability in a nested-mesh model is generally not a
problem (Ciment, 1971). Of greater concern is the "transparency" of
the gird interface to gravity waves radiating out from the topographic
obstacle (Browning, et al., 1973). A selectively damping time differ-
encing scheme of the Matsuno or Lax-Wendroff type (Phillips and Shukla,
1973; Bleck, 1977; Phillips, 1979) is often considered necessary to
prevent a buildup of gravitational wave energy in the fine-mesh domain.

The flow of information between the two grid domains can be either
one-way (in the sense that the coarse-mesh forecast provides boundary
conditions for the fine mesh) or two-way. With reference to the
accompanying figure, the two-way mode (which this author favors) stipu-
lates that fine-mesh results interpolated to point C are used for car-
rying out coarse-mesh finite-difference operations at B which in turn
provide boundary conditions for the fine mesh.

Due to the small size of the fine-mesh domain, forecast results are
extremely sensitive there to flux variations of various quantities (es-
pecially mass) across the interface. Therefore, the two grids should
be juxtaposed so as to allow exact transfer of this flux information.
The logical choice for a grid interface thus is a 1ine of coarse-mesh
flux grid points coninciding with a line of fine-mesh flux points. With
proper staggering of grid points (example: Arakawa's C grid), boundary
conditions for the fine mesh can then be posed exclusively in terms of
fluxes of mass, temperature, moisture, etc., whereas height, temperature
and moisture values themselves remain unspecified at the fine-mesh
boundary.

Boundary conditions for the velocity components (as opposed to mass
flux components) are probably less critical as long as they only affect
the inertial terms in the mementum equations.
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Care should be taken to assure that grid values interpolated to
point C are not unduly influenced by fine-mesh scales of motion. 1In
particular, the fine-mesh bottom topography in the strip between B
and C (and a short distance beyond) should contain no scales unresolvable
in the coarse mesh. This will minimize aliasing problems in finite-
difference calculations at B. :

In the author's experience, the most serious problem facing the
mountain flow modeler is unrelated to the grid nesting concept. It
concerns our inability to initialize the flow pattern over and near the
mountain barrier on a scale commensurate with the scale of the barrier
itself. A measure of this shortcoming is the strength of the orographic
anticyclone forming over the mountain range during the first few hours
of integration.

Since a dynamic concept for initializing air flow over mountains
is lacking at present, our only recourse seems to be to adhere as closely
as possible to the observations taken in the vicinity of the mountain
barrier. In particular, we should try to design objective analysis schemes
which make better use of wind information in specifying the mass field.
The author is presently testing the following scheme which is an exten-
sion of the well-known "backward" use of the balance equation.

Objective analysis schemes (with the exception of certain global
fitting schemes) express a grid point value Uy by a 1inear combination
of nearby observations us:
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where o, = al{Xx s, ¥ » X, ¥.). This expression can be partially dif-
ferentiated with Qespgct lo the grid point location (x _, yo) to yield
values of both 3u/3x and 3u/sy at the grid point: °
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The weights da./3x, and 3a./3y, in these expressions can be easily
computed, even for sophistqcated analysis schemes Tike optimum inter-
plation.

The resulting scheme does more than simply combine two analysis
steps into one: it determines the exact slope of the gridded u field
at the grid point, as opposed to an average slope over twice the grid
interval, and therefore shows considerably more detail on the scale of
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the station separation than a conventionally derived field of 5u/ax or
du/3y. This advantage presumably is carried over into the field of geo-
strophic vorticity which can be inferred from the balance equation if
Ju/ax, 3u/dy, av/ax, dv/ay are known, and further on into the geopotential
field which can be derived from the above by two-dimensional relaxation
of a Poisson equation.

The approach suggested here goes one step further for the sake of
vertical consistency. A geostrophic potential vorticity field can be
constructed by dividing the geostrophic absolute vorticity values by
(independently analyzed) layer thickness-which essentially is the second
vertical derivative of the geopotential. The resulting concoction of
horizontal and vertical derivatives of geopotential can be rewritten
as a three-dimensional Poisson equation which can be solved by three-
dimensional relaxation.

The laminar structure of the atmosphere can be optimally taken

into account in this scheme by carrying out the analysis procedure in
isentropic space. Orographic features enter into the relaxation process
through the Tawer boundary condition which is of the mixed type if sur-
face pressure is left unspecified. (However, surface potential tempera-
ture must be specified in the relaxation process). The entire process
is identical to the one used by Bleck (1973) in his potential vorticity
prediction model.

The intent is to initialize flow conditions in the fine mesh through
relaxation on that mesh, as opposed to interpolation down from a coarse-
mesh analysis as was done in Bleck (1977). Provided the surface potential
temperature field is adequately determined, this fine-mesh relaxation
hopefully will lead to greater dynamic consistency.
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