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1. INTRODUCTION

A typical feature of the general atmospheric circulation at
middle and high latitudes is a tendency to fluctuate between
two rather extreme circulation patterns. This behaviour of
the atmosphere is most common at the Northern Hemisphere
during the winter and has been known among the meteorologists
for a considerable time (e.g. Garriott (1904)). One of

these two states is identified by a predominantly zonal

circulation or a so-called high index circulatibn, the other

state by a meridional or a low index circulation. The
meridional circulation is often broken up inAa characteristic
atmospheric pattern of cut-off lows and highs. These
features usually have a time scale of several days during
which they affect the weather in a very dominating way.

The transition from the zonal to the meridional or cellular
circulation is very characteristic and follows a very
typical chain of events. Fig. 1.1, showing a series of
idealised 500 mb maps, illustrates the change over from

a high index to a‘low index circulation. The break-down

of the westerlies at the Northern Hemisphere usually takes
place in 2 preferred regions} in the eastern part of the
Pacific and in the eastern part of the Atlantic ocean.

A special feature of the break-down of the westerly flow

is the creation of a dominating high pressure cell; what

has been called a blocking high. Due to the time-scale of

the blocking high, which is of the order of several days,
and to the associafed substantial changes in the weather
type, there has always been a great meteorological interest
in the blocking phenomenon.

In the infancy of numerical weather prediction the problem
of blocking was studied intensively: Rossby (1949),

Yeh (1949), Namias (1947), Rex (1950a, 1950b), and
Berggren et al (1949). After a period of great activity
among Rossby and his associates, the interest faded away

and the dynamical scientists became absorbed in short
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Idealized sketches of the development of unstable waves at the 500 mb
level, in association with the establishment of a blocking
anticyclone in high latitudes. Cold air, light shade; warm air,

dark shade. $Solid lines are stream lines and broken lines the
frontal surfaces (from Berggren et al, Tellus 1949),
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range numerical weather prediction and the modelling of the
general circulation. However, a recent interest has taken
place to study the blocking phenomenon and I will here
report about some new investigations carried out by

Egger (1978) and Charney and DeVore (1979). From the

' standpoint of medium range weather forecasting the blocking
phenomenon is of a fundamental interest. It is necessary
to explain the physical processes essential for its
generation and maintenance in order to design a numerical
model for its prediction. It is also of a very great
interest to investigate the phenomenon of blocking with
different existing models to see to what extent blocking

is predictable.

In this lecture we will present some observational material
about blocking and after that discuss some theories of
interest to the understanding of the blocking phenoménon.
In a second lecture we will present results of some |

numerical models and their prospect to predict blocking

2. OBSERVATIONAL STUDIES

One of the difficulties with the study of blocking is to
find a clear definition of the phenomenon itself. The
definition, proposed by Rex, and given below, should be
understood in the light of the theory of the hydraulic
jump. This theory which we will describe. in Section 4
was suggested by Rossby at the time Rex worked with
Rossby'at the International Meteorological Institute

in Stockholm. Lafer empirical studies have relaxed
Rex's definition and many meteorologists now understand
blocking as a long lived quasi-stationary high pressure
cell anomaly at middle and high latitudes. -
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The most comprehensive observational study of blocking

has been published by Rex (1950a), (1950b). Rex suggests
the following criteria for blocking. (The criteria should
apply at the 500 mb level.)

(i) The basic westerly current must split
into two branches.

(ii) Each branch current must transport
an appreciable mass.

(iii) The double-jet system must extend
over at least 45 degrees of latitude.

(iv) A sharp transition in the westerlies
from a zonal type flow upstream, to
a meridional type downstream must be
observed across the current split.

(V) The pattern must persist with recognisable
continuity for at least 10 days.

In a situation satisfying these requirements blocking
is said to be initiated when (i) occurs and is said
to have disappeared whenever (i), (ii), (iii) and (iv)
are no longer satisfied. Using these criteria, Rex
analysed the two periods 1933 - 1940 and 1945 - 1949
inclusive. The following general conclusions can be
drawn.

1. The blocks have a very characteristic distribution
with 2 preferred regions, one in the Atlantic area with
the meridian afound 10W and another one in the
Pacific around 150W, Fig. 2.1. The number of
cases domiﬁateé in the Atlantic but it is possible
that the small number of cases in the Pacific was
due to inferior data. To the knowledge of the
author no comprehensive statistics of blocking are

available for a later material.
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Fig.. 2.1 Geographical distribution of block occurrence in - the northern
hemisphere; the histograms show the frequency distribution in
longitude of 112 cases of block initiation at mid-tropospheric level.
Modes shaded black. Cases included occurred during the years 1933 -
1940 and 1945 - 1949 inclusive (from Rex, Tellus, 1950j.
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2. There is a marked seasonal variation in the blocking
activity as can be seen from Fig. 2.2 with a minimum
around September and a maximum in April. A very

| marked reduction in the‘blocking activity occurs
between May and July. There is also a substantial

variation from year to year.

3. The time-scale for the blocking phenomenon is of the
order of 2 weeks, Fig. 2.3. During this period the
Atlantic block, which is the one most investigated,
has a characteristic variation in its pesition.

During the first phase there is a marked retrogression
of the block and in the final stage an easterly

movement, Fig. 2.4.

‘Blocking patterns, in particular well developed and long
‘lasting ones, are most common at the Northern Hemisphere.
HoWever, they'also exist at the Southern Hemisphefe and
vaecording to Taljaard (1972), blocking is fairly frequent
in late winter and early spring in middle latitudes, in
particular in the area 135E - 160W. Other areas are
“around 45W (Scotia Sea, east of the Southern tip of

South America) and in the vicinity of Marion and Crozet
Islands (SE of South Africa). Blocking is most frequent
during July - September in the south-western Atlantic

and Pacific Ocean, but a secondary maximum is evident

in autumn (March - May). The same seasonal variations
are found in the weakér blocking area of the south-western

Indian Ocean, where the two peaks are of equal magnitude.

Further, according to Taljaard the duration of the blocking
is usually less than at the northern hemisphere ~ 6 days,
combined with a maximum longitudinal displacement of 25°
during the life of the block. Taljaard further considered
that the block should be centered at least 10° south of the

mean position of the sub-tropical high pressure belt.
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Fig. 2.2 Seasonal variation in blocking activity;vAtlantic (82 cases) and
Pacific (30 cases) trends in the percentage of days dominated by
blocking action are shown by month (from Rex, Tellus, 1950).
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Fig. 2.3 Persistence of blocking action in the Atlantic area; the straight-line
frequency graph shows the distribution by duration of 82 cases of
Atlantic block development. Cases (4%) with periods longer than
34 days are not shown in the figure (from Rex, Tellus, 1950).



244

L.OCATION OF BLOCK
Median 82 Atlantic cases
: .
t
30
Initial
20
:/'. ’/'.
0
i
10 G
i
- 7
" N
v kg /LNy Y v/
c . 0 /lu/ A 4 /4R /
o .
1.
: *
v
vl
o
w
=)
S
c A
o 20 - -
s Mid-period:
a ys after initation
10
1A
o .,
Med:lan
1
|
20 e e
: ina
il 7 /// 14 d
Y Y
’;A 7 / after initation
10 :Au 7
r%"%[ / 4/4&
. / //// /// / // /
| i
0! LI e
60 40 ,20 -0 - 20 40
West : * : East
Longitude
Fig. 2.4 Movement characteristics of Atlantic blocks; the series of histograms

shows the frequency distribution in longitude of 82 cases of Atlantic
block development - initially, at mid-period and finally (just prior
to dissipation). Modes shaded black. Positions were determined at
mid-tropospheric level (from Rex, Tellus, 1950).



245

3. BLOCKING PATTERN AND ENERGY DISPERSION

Several theories have been suggested to explain the blocking
‘phenomenon. A good theory ought to describe the most
dominating features of the blocking highs, i.e., the
splitting of the jet upstream of the high, the persistence
of the pattern, the preference for certain localities and

the strong seasonal dependence.

Numerical experiments with a barotropic model including
topographical forcing have produced quasi-equilibrium
phenomena, reminding very much of blocking, Egger (1978).
Although the actual atmosphere naturally is baroclinic it
is very likely the blocking, due to its scale, must have a
rcounterpart in a simple barotropic atmosphere and the
baroclinic forcing may be regarded as a secondary effect
and only act as additional forcing on the planetary scale
motion. The theories for blocking which we will describe

in this lecture will be restricted to the barotropic model.

We will make use of the barotropic equation in the following

form

a (f+z) _
T [—55) =0 (3.1)

where D is the depth of the atmosphere, ¢ the relative
vorticity, and £ the Coriolis parameter. Assuming the
north-south motion to be geostrophic and the perturbation
to be small, the vorticity equation can be written in the
following form on a B-plane:

oD’

I Iin!
3°D 3°D + D!

‘ + U B - A2 =— =0 (3.2)
3%29t 5% X B
, _
where A\? = éﬁ— , D, is the undisturbed depth, and D' the

perturbation ©of the free surface; D = DO + D",
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The phase speed, c, of the perturbation is:

_ 47%U - pL?
4?2 + A2L2

(3.3)

where U is the zonal mean wind speed, L the wavelength and‘

=]

B'=_a——

g

The energy is propagated by.the group velocity, which
because of the dispersive character of the flow, is-
different from that of the prevailing current. The group

velocity, c_, is defined

q

QU IV 1 [ .
Cy = Tk c }L oL » o | (3.4)
where V is the‘frequency and k is the wavenumber.

The COrreSponding group velocity to equation (3.3) takes
the form | ‘ L “ ' ' ' ‘

_ 47?0 + pLZ + 2)2L%c
g 4n? + )\2L2

(3.5)

As can be seen from (3.5) the group velocity can be negative
and energy be propagated upstream. This is not the case
when )\ = 0 and consequently we need to consider a free
surface 1f we should be able to describe upstream propaga-—
tion of wave- energy, Fig 3.1. In the following we will
investigate the dispersive properties of avselitary wave
described bereh (1949). We will show how the dispersion

of the solitary wave very strongly depends on the latitude
and that the behaviour bears resemblance to a blocking

wave once the block has been'established._ The incorporation
of a free surface is necessary in order to describe the
charaeteristic feature of the bloeking pattern. to have a

gradual westward progression. TFollowing Yeh we will write
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Fig. 3.1 (a) Group velocity (broken line) and phase velocity (solid line) as a
function of wave length for a fixed upper surface.
(b) Group velocity (broken line) and phase velocity (solid line) as a
function of wave length for a free upper surface. Both curves are
limited by the horizontal asymptotic line Cg=Cg (min) (from Yeh,
J. of Met. 1949).
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equation (3.2) in a non-dimensional form using the scaling

parameters
£ = kx
T =1t VRU
A? = fo/gDOB

which gives

3 3
8D'+8D‘+

D! » oD
: Tl A2 o=
3E29T o3

9T

= 0 , - (3.8)

Let us next assume  an initial solitary wave be represented
by '

D'(g,0) = % B /7 a"le’gz/az; (3.7)

where a is an arbitrary non-dimensional constant and B
another constant of dimension length. Then at any
subsequent time D'(g,t) can be determined from the following
integral
e 212
D'(g,T) =B J e & kcos{kg - T

O

k? - k

]dk (3.8)
A% + k?

Since_A2 depends on latitude(because of B) the dispersion
of the solitary wave must also be a function of latitude.
I1f we for_gxample could maintain a final”zonal current U
near the pole, the A? » «» at the pole and (3.8) becomes

—q 212 _ _r2 2
D'(g,1) =B J e 2K cos kgdk = % Ba !l e~E /42
o

This equation shows that once a pressure. rise or fall is
formed near the pole it would remain there without being
dispersed. This would correspond to an extremely slowly
moving blocking wave.
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Fig. 3.2 Dispersion of an initial solitary wave at 3 different latitudes.
The time unit, T, is approximately 1 day and the space unit, £ ,
on the horizontal axis is 1000 km. (a) at the equator,

(b) at 40° latitude and (c) at 70° latitude (from Yeh, J. of Met.
1949) .
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Fig. 3.2 shows a numerical evaluation of (3.8) for three
different latitudes. U =»17 ms—1 and DO = 8.10 m3 have

been used as numerical values.
The following conclusions can be drawn from Yeh's study
(i) Bloéking éfféct,is a high 1étitude_phenomenon

(ii) The intensity of the blocking wave increases
with latitude

(iii) The speed of the blocking wave decreases
with latitude

(iv) The life time of the blocking wave
increases with latitude.

4. DEVELOPMENT OF BLOCKING AS AN ANALOGY
TO THE HYDRAULIC JUMP

Rossby (1950) suggésfédAthat“certainbkinds of blocking at
least superficially resembléd a hydraulic jump of a type
which occurs in open chahnels: This happens when the

speed of the water grows in excess of the critical value vgD,
where D is the depth of the water and g is the acceleration
of gravity. The development of stationary hydraulic jumps
in Streams and channels is made possible by the fact that
under steady state conditions with prescribed values for
volume and momentum transport two states of motion are
possible, one of which is chafacterised by the water speed,
u, in excess of the critical Vaiue, /Eﬁ;and another speed
below the critical wvalue. .The formef state of motion is
accompanied by a<higher.raterf energy transfer downstream
than the latter. The hydraulic jump represents a sudden
transition from a super-critical flow at a high energy
level to a sub-critical state of motion at a lower energy
level. In the jump itself a fraction of the kinetic energy

of the basic flow is transformed into eddy energy.
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Following Rossby we shall consider a horizontal westerly
jet in a non—divergent incompressible atmosphere. We

will show that for a constant volume transport the momentum
transfer across a vertical plane normal to such a jet
possesses a minimum value. Hence if the flow is at all

- possible dynamically, two solutions exist which are
compatible with the continuity and momentum requirements.
Since these solutions represent different energy levels a
necessary requirement for the development of jumps is thus
fulfilled.

Consider a jet with the speed u = i, X p01nt1ng eastward .
and independent of y (p01nt1ng northward). the pressure
distribution can be computed from :

s =

=]

wherenp is the deﬁsity and f the'Coriolis parameter. If
Py and Pg represent the undisturbed pressures to the north
and south (Fig. 4.1) it follows that
+a
Pg - Py = pJ fu dy (4.2)
-a

where we have extended the integration across the entire
current width 2a with the origin of the coordinate system

in the centre of the jet. A constant value of £ gives
Pg - by = ofV = where V = 2au T taley

represents-the Volﬁme transﬁbrt; vIt is,evident thét a
uniform slowing down of the current, followed by a
compensating broadening of its width, wiil leave the
pressure on individual fluid filaments unchanged (see
dashed lines across the channel in Fig. 4.1). Thus in
this dynamical model there would be no way of reducing

the speed of the current in the manner observed in a typical
blocking wave.
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If one on the other hand allows for the fact that the
Coriolis parameter depends on latitude by setting

tos vy (4.0)

the préssure distribution may be computed from.
, H v N
p=pS—pf0J udy—pBJ’ y udy (4.5)
-a -a ‘

This pressure distribution is given by the dotted line

in Fig. 4.1. If p is the pressure distribution corresponding
to the case of constant f and p' the additional pressure
field associated with B, so that

p=p+p'

it follows that

v . s ;
1 = dv = a -y 2 52 4.6
p PRy udy =pp—5—u (y a®) (4.6)
—-a

It is easily seen that this bressure excess (difference
between the dashed and dotted line in Fig. 4.1) vanishes
in the undisturbed atmosphere surrounding the jet and

reaches its maximum in the centre where

a
L | (4.7)

For é constant transport (V= 2 au) it follows that

a
1 L= o — : K . .
Pmax pEV 4 (4.8)
Thus the pressure excess increases with increasing width
(or increasing speed) of the jef and it follows that a
possibility exists for the setting up of an internal
mechanism through which the spéed of the current may be

reduced.
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Some numerical values (MTS-units)’ give:

g = 2.10 g = 2.107 11

‘a = 106 m a = 2.106 m -

p/ = 4 mb _ + P/ = 8 mb

u = 40 msfl, . max Soo u =20 ms 1. max

p = 1073 o = 1073
The momentum transfer, MOT, in the jet céh be calculated
as follows

du _ .o _ 3p
gt T PIV g (4.9)
or

du _ . dy , 3D _

oar - Pt ag Tax O

or since

af _ = g4y
oat - PBY T Pat
"we obtain )

o (u-ty+ By + B =0 (4.10)
Integration between fixed walls assuming steady states .
gives

a . .. ,

MOT = [ u (u + Ezi)d = constant (4.11)

: ) y .
-a
We have also here made use of the fact that %§ = 0 to the
north and the south of the'jet and‘that:%% vanishes in

the region of parallel flow outside the blocking zone.

We shall aﬁply the result of equation (4.11) to a simple :

barotropic current of constant speed u and width 2a. If

the corresponding quantities upstream from the Jjump are’

indicated by uo-and

2ao it follows .that the momentum transfer

(MOT) apart from a factor p, is given by:

MOT = 2au? +

Rua

3

O

3 Buo a ,
+ —3 (4.12)

= 2 a u?
o%o
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The volume transport V is given by

. - . (4.13)
| V = 2au 2aouo |
The momentum transfer can now be written
. 2 ‘
MOT = V(u + &Y (4.14)
24y ?

" MOT expgessed by equation (4.14) reaches a minimum when

u’ = §¥§. In Fig. 4.2 we have illustrated the case where

the channel width is a = 106m and where the initial wind-
speed is u, = 30 ms_l. We can see that there are 2 permissible

-1 and

states having the same MOT for the windspeeds 30 ms

11.8 ms_l. It follows further that there are always two
o 2

permissible modes when u, > u,g =E3%T which we will call

the critical velocity. For an initial channel width of
8= 106m, u o =7 ms™! and for a channel width of

= 6 = -1 *
a, 2.10°, Uso 28 ms .
It is suggested that a current with a superécritical value
of u can break down into a flow with a lower energy level.
It is further suggested that this break down takes the form
of two branches of the original jet with a pressure rise or

a block (p' > 0) in the middle between the two jet branches.

5. BLOCKING AND LARGE SCALE FORCING

The idea proposed by Rossby that the hydraulic jump

could explain the mechanism Of‘blocking received some
criticism during the years. The development of blocking

is by no means a rapid process and”there is in fact no
motion Wthh one could expect in association w1th an’ [

hydraulic Jump.

The fact that the blocking is mainly a phenomenon in the
Northern Hemisphere, at least in its most developed'form,
and also due to the fact that it is obsérvédAiﬁ”éertainw
areas only, suggests that forcing processes are of major
importance.
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Fig. 5.1 shows the flow pattern which developé in a

barotropic atmosphere when integrated over a sphere. The

flow is obtained after a 10 day integration using a baro-
tropic version of the ECMWF grid point model. The

integrations have started from a zonal flow (January
climatology at 500 mb). A smooth topography has been

-used identical to what is used in the ECMWF operational

model. It is indicated that there are 2 regions where

the flow is weakened; namely around 40W to 10W and 170W

to 130W. These are the areas where blocking is mainly observed.
Two intense jets can be seen over the east coast of Japan

and the east coast of the United States of America. Clearly,
baroclinic developments in these regions will further intensify
the two ridges downstream through the action of- dispersion
processés. Namias (1964) stresses the idea that the physical
causes of the blocks lie in a feedback mechanism between the
atmosphere and the surface.

Egger (1978) recently carried out some simple numerical
experiments using a highly truncated version of the baro-
tropic vorticity equation with Newtonian forcing. The flow
patterns in Fig. 5.2 suggest that non-linear interaction
between a forced wave and the ultra long planetary waves

produce patterns which are very similar to blocking patterns.

We will next turn our attention to a paper by Charney and
DeVore (1979). An investigation by a low-order barotropic
model in a B-plane channel with forcing can be shown to

have a multiplicity of stationary or oscillating states,

each presumably with its own class of smaller scale
instabilities and each state presumably capable of
undergoing transitions with the aid of these instabilities

from one state to the other.
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The flow is the result of a 10-day global grid point

* integration starting from a zonal climatological flow at 500 mb.

(By courtesy of J. Quiby).

Fig. 5.1 Flow pattern at a free barotropic surface and forced by the earth
topography.
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Fig. 5.2 Blocking in a channel caused by Newtonian forcing. Streamfunction ¥
(10"m2s-1) at day 10 (a), 20 (b) and 25 (c). Isopleths of the
orography (m) are dashed. From Egger, J.Atmos. Sci.,(1978).
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As in Séction 3 we will consider a barotropic model on a
B-plane channel w1th a free surface of the height D = DO + D'.
The lower elevation will be denoted by h(x,y) where x is the

 the eastward directed coordinate and y the northward directed

coordinate. Fig. 5.3.

The equation can be written

%(vw—w>+J<wvw+h)+si - (5.1)
= - kT2 - 0
fZ
3= o
eD,
_ gD’
L

- kv?y is a vorticity sink due to boundary layer
“friction '

* ‘
_ kV2?y is a ficticious vorticity source term which
has to be introduced ‘in this way in the present barbtropic
model. In a barbclinic model this will correspond to

differential heating.

*
The problem is further simplified by expanding ¢, ¢y and h
in orthonormal eigenfunctions of the Laplace operator,
which, for the channel flow under consideration, are

simply trigonometric functions,

y =L2f I y.F.
. T i=1 11
¥ _ 12 > ‘ * -
y" o= L2t V*Ty . | (5.2)
i=1 : ,
h =D z thi
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Fig. 5.3 Upper part of figure illustrates a barotropic channel with a free
surface and with the height D. The orography with the height, h

is dashed. Lower part of figure shows the integration area. For
further information see text.
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where
2 2 =T 2 . .
L%y Fi aj Fi (5.3)
and
aFi
= = = 5.4
= 0 at y 0,‘ﬂL ( )

are used in order to satisfy the condition of no normal
flow at the boundaries. The procedure is identical to
that of Lorenz (11963). Thédfollowing”G sets of ‘eigenfunctions

are selected

_ - 7 cos L
Fi = Fp = V2 e8¢ o
Fz FK 2 cos I, Sin
= = in BX 4inp ¥
F3 = FL 2 sin T sin ¥
(5.5)
- - /5 2y
F4 = FC = J2 cos T,
| - = cos BX gip 2Y
F5 = FM = 2 .cos I, Sin 3
- = 9 gin BX gin. 2
WFG = .FN = 2 sin - sin.5-
and setting
6 : c :
LA T T VAV NS & 84 T Aot Ve o i (5.6)

o . : *
and similar expressions for ¢ and h.

The first orthogonal function, FA’ permits a zonal flow

component which varies from zero at the boundaries to a
maximum at the centre of the channel; the fourth, FC,
permits a zonal flow component with both a maximum and a

minimum in the interior.
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The y-amplitudes of the corresponding pairs of ‘wave: functions
(Fg» FN) have, respectively, one and two maX%md in’ the
interior. ’If'Fj and Fk are two arbitrary-eigepfunéﬁioﬁsyfﬁf
then owing to their orthonormal property -

2 _ -
L°J(F,F) = E c F LT

j2p Cidk i

where

C

2
ik = L FI(EL T | | | B CI)

with the bar operator denoting a horizontal average. It
follows by definition that cijk = - cikj
boundary condition that Cijk = Cjki‘= ckij'

‘and from”the

We also have

8Fi L 9 i
= - PPy Thiw o o 609
J_.]_ ; ;
Non-dimensionalising
i_ = (a?+xz)—1 { ; c (az—az)w P.—h ¢+h’¢y}
i i k>3 ijk - J "k’ "k itk k7]
| - X . ~ (5.10)
" bjikwjff_kai(wifwi>} = :

For simplicity and to ensure that we afe dealinguwith?
large topographic scales only the first topdgfaphichéVe
mode K will be considered and we have for the non-
dimensionalised, h

h-

__o
h =355 Fx
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We will next introduce zonal driving and d1881pat10n in the
first y-mode by fixing wA and setting the other spectral
components of w ‘equal to zero. It can be seen from
equation (5.10) that if the second y- -mode components are
zero initially, they W111 remain zero. The system will be

governed by

By = - KUy - U3 *+ by Vg | (5.11)
b = - k¥ - by ¥y a a (5.12)
b = - K wﬁ +5;1 ¢k - hnl‘wA S eay
Here
hoy = e (142 gl g%
by = ig/ﬁ" n__, _L_n = (5.14)
Tope1 B B2 o4g 2
hn1 = ggEﬂ n(n2 + 1-+x%31 ;%

Here a is the radius of the earth.

At equilibrium these equations yield

by, K

*

= (Y, = Yy) ' : : (5.15)
Bpp o Bgy By A e |
‘p . . . ) L
ety S 0y - - (5.16)

nl bn1 + k

Yy b1 ‘ |
ke S + S (5.17)
hn1 b2 + kz YA
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from which wA’ wk and wL can be found by equéting (5.15)
and (5.16) and solving the resulting cubic equation in wA‘
It is found that for a large range of parameter values
there are three separate equilibrium values of wA' By
calculating the characteristic equation to the equations
(56.11 to 5.13) it is found that when there is only one
equilibrium this is always stable. In the case of three
equilibriums the intermediate value of WA is unstable, while
the other 2 remain stable for first mode perturbations.
However, the one with the small value of wA become unstable
for second mode perturbation when the zonal driving wA is

sufficiently large. There is consequently  a range of

values for which 2 stable equilibria exist. The unstable
equilibrium being found, cannot be barotropic instability of
the zonal flow, since RB- Uyy does not vanish. This
1nstab111ty is therefore solely due to the 1nteract10n of

the topographlc wave with the zonal mean flow.

Fig. 5.4 shows the transition from an unstable equilibrium
towards a low index stable equilibrium. In this case a
point in the first mode phase space, close to the unstable
fixed point, finds itself in the attractor basin of one

or the other of two stable fixed points and winds down into
one of them. However, when one of the stable fixed points
becomes unstable for mixed mode perturbations its rep-
resentative point in the extended phase space need not find
itsélf in the attractor basin of the other stable’fixed
point and the system may oscillate. This oscillation can
occur even if the mountain amplitude goes to zero.

Fig. 5.5 examplifies such a state.

‘In order to confirm these spectral low order integrations,
numerical integrations were carried out on a 16 x 16 grid
point model using the same geometry, dissipation and
forcing as in the spectral model and with initial conditions
taken as equilibrium solutions of the truncated spectral

model. Fig. 5.4b and Fig. 5.5¢ and 5.5d confirm very well
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Fig. 5.4 Transition from an unstable, first mode,

middle-index state to a

stable, first mode, low index state. (a) spectral model, (b) grid -
point model. From Charney and DeVore, J.Atmos.Sci., (1979).
T T T T T T T T T T T T T = T T T T T T T T T Y T T L
o4 @1 [ . (e} ]
B a A A e A A ] - i : 4
o v oS . . -1 - v ~' ,’". ‘.". et s -~ ™~ -~ "
w o030 k% . E " 3 L R o -.- PR .," A
A | . . - : h : ; i
028l : - v
- : b ¥ :
.m L A, 1 1 1 X, Ny 'l L i A A L L L 1 1 1 A d i 1
o0 T T T T T 1 ¥ T L] L} L} T T L] T T L T T T T 1} T ¥ Ll T L
r ®1 X (d
m X > 7] B ~ 3 . .: .- =
008} 1 L X i
oos|- 1 L g
=L 1 F ]
¥ oo — -

Cc I - L .4
-002 4 p = .
004 : 1 : : :
ool : 1t Y \ 3
-008 L ¥ E : : .'._.' 5 :
_Dno 1 zIn L ‘!“ - 1 @ 1 & ' : h ‘ L lzlw 1 - "b ° & L & ) 1 & 5 & .‘L ?‘m i lrm A ‘Im

t t
Fig. 5.5 Oscillation of a topographically forced flow. (a) and (b) are the

first and second mode zonal streamfunction amplitudes as a function

of time for the truncated spectral model;

grid point model.

(c) and (d) are for the

From Charney and DeVore. J. Atmos.Sci., (1979).
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Fig. 5.6 Streamfunction fields of the stable first mode equilibria of a

From Charney and DeVore,

(a) and (b) for the spectral model;
(c) and (d) for the grid point model.
Sci., (1979).

topographically forced flow.
J. Atmos.



268

the results with the low order system. Fig. 5.6 gives
the corresponding streamfunction field for the two stable
regimes and for the Spectral and grid point model
respectively. It is interesting to note the similarity
to a low index and a high index circulation in the

atmosphere.
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