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1. A SURVEY OF CONSERVATION LAWS

1.1 Conservation oprotential vorticity : Ertel's theorem

Let U be absolute velocity, and rot U = grad & X grad ¢

its curl. The continuity equation in coordinates &, ¢, 8

reads
D (agradé.rotU) = (qrad—— rotU + gradé. rot ) (1)
Dt

Here o is specific volume. If 6 is a conservative variable

(D6/Dt = 0) the first term on the right vanishes ; if 6 is
a thermodynamic variable (f(9,0, P) = 0O, P : pressure) ,
the second term on the right vanishes because, from the

equation of motion

grade. roth = grads. (gradngradq),= 0... (2)

If 6 is any function of potential temperature, it satisfies

both properties and therefore

D _ : o B
€ (agrade. rotU) = O (3)

The quantity Wifhin brackets is‘known aé.fﬁftél's)
potential vorticity. This theorem is central to the
dynamics of large scale flows ; it is valid as well for
hydrostatic systems, and further, it potentially contains
the whole quasi-geostrophic (baroclinic and barotroplc)
approximation, for the derivation of which it provides

the most direct starting point.

1.2 The primitive equations in isentropic coordinates

Isentropic coordinates are seen to arise naturally in the
derivation of potential vorticity conservation. A

coordinate system (x,y,6) looks therefore attractive as
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‘far as conservation laws are concerned, even though it has
scarcely been used up to now because of possible difficul-
ties related to boundary conditions in particular. One
advantage of this system is the vanishing of "vertical
velocity" D8/Dt in the adiabatic case. The hydrostatic

(primitive) equations read

+ N x V + grad M = 0 | | (4)

bV
Dt
M _ 4 =
5o I 0 (5)
0 0P ., 0P _ '
N _ ' _R/c . .
Here we choose 6 = ¢ T/, T =P P ; N is the vertical

unit vector, f Coriolis parameter, M Montgomery's potential
or dry static energy (M = CPT + gz = 116 +¢, ¢ geopotential):;
V is horizontal velocity and all operators are 2-

dimensional. For potential vorticity, we get :
.Dn/Dt = 0 with n = (rot V+f)/(0P/086) (7)

-:To (4,5,6) we must add boundary conditions. The flow is
bounded at top and bottom by surfaces ¢ = O and eB(x,y,t)
respectively. We shall use the following symbols

d/dt, D/Dt, a/at,v¢7¢€ for derivatives with respect to
time, respectively : ordinary derivative, Lagrangian
derivative, Eulerian derivative and derivative following
a boundary surface. We also denote by ;ggg/the gradient

following a boundary surface. Boundary conditions then

read
q(aﬂf@ + V.ZMM4 8 =0, P=p, at & = 64; (8)
(2t + V. geadf 6 =0, M=1 +oy at 8= 65. (9)

5%z B
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For deriving the invariants, the following identities will

be’uéeful':

P2 ARV IR 77 S Y T R € U B
‘;ﬂaé/# grad + Zmz¢/e 3/08 | . : | _ fil)r‘
dr
| div F F . gtads | T
[ e n--ff 22w
X yeB rad F XYy F ;g__ﬁ B , .
8 8 T
_q_f f=f Af + [fa/e/dﬁ < (13)
at 7/ e 6 Ot B

14

From (6,8,9,12,13) we also get :

Oor fp
-4 - £92 o _ 3P Df . o (14),
dt LEN | 3¢ Dt o
o XYoo ylog | 3

1.3 Conservation laws in isentropic coordinates

Tt is first obvious that the integral with respect to mass
of any function of potential enthalpy or potential
vorticity are conserved in time. Further, these invariants

can be considered independently at each level.

Next, relations (1 to 20) yield succésSively momentum

conservation
d = 9P V = P gead § ; - (15)
ENJIE R PN
XYy eB ' : XYy ‘

and energy conservation

e |
< T
d _op(V, M 1 [
3t ./J(/. 55<TT+'EFE>+' y/}FI<K?§%f¢T39 = 0.
XZYQB ] Y
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1.4 Energy conservation for‘the linearized system

The linearized form of (4,5,6,8,9 ) for a flow.slightly .

perturbed around a stratified resting state reads

¥ i Enx v fgraa M =0 n
oM'/d8 - I' =0 (18)
2 ap' . = . | (19)

ra—— Pe div Y'= 0
where bars denote mean quantities and primes perturbations.
Eliminating everything but M', V' in (17, 18, 19) yields
the modified form : ‘

oy + fN x V' + grad M' = 0 , (20)

0t S
(P, 2B 3 ) oM +aivy' =o0. (21)
026 T 98/ 9t » T e

Imposing the fluctuations in time .of boundaries to be

small allows a reductlon ~of boundary condltlons to fixed

boundarles : 8 = ﬁf (a constant) and p = G(Z (x,y))—r ,
(x,y) (a function of x and y if we keep flnlte amplltude

‘mountalns) "Linearized boundary conditions are
o e . , : )
g 5T 0 at o 6 (22)

| - (. : 1 . _.-_- o= B : ;
(eBae 1)%_% + V', grad ¢ 0 at o= 8, (X'Y)A (23)

The 11near system (20 21 22,23) possesses a quadratlcrm

1nvar1ant the perturbatlon energy

e [ ) [f( ), o
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(Notice thé‘bbuﬁdary‘termiin the available:pdtential
energy):* One can therefore find a complete system:-of

oscillating ‘eigenfunctions.

The potential vorticity equation survives linearization

in the form :

ol

éL 8 %Ml-) +V'.grad £ = 0 (25)

g% ( rot V' -
R 8

W“m
@
=il

1.5 The guasi-geostrophic baroclinic approximation

The familiar quasi-geostrophic. approx1mat10n obtains
when ‘cornisidering motion with ‘

"<y,

a) advective time scale : U/LT
b) small Rossby number : Ro U/Lf <1

which together reduce the equatlon of motion to geostrophlc
relation, here fN x V + grad M = 0, to first order 1n RO) ;
c) small meridional extent : Ly/a = O(RoO):

which yields wvanishing divefgence-to first order in Ro, and
therefore ‘a strédamfunction ¢ = M/f-)w;

d) small density‘fluctuations (ap /96) /(3P/d6) = O (Ro),

equlvalent to the statement (RORl) g 0 (Ro)

(Wthh allows potentlal vorticity to he llnearlsed) VThe

potential vorticity equation (4) is then rewritten :

£2 | P |
(9—+ Iy, )) <f+v2¢f' 02 8 ) =0 . (26)
ot T : — 08 = 00 .
' Py He

There is no real 51mp11f1catlon of boundary conditions,
except if we con51der small fluctuatlons only for the
boundaries, in which case we get condltlons close to
(22,23) |
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I )) ((5 %—- 1y + ——B—> =0 _.“‘at-e = B (28)
2 } s 5 e ) .at ’s o

0

Here we have used constant 8, and §, as @pproximations. to

actual boundaries, which supposes that orography is O (Ro)
compared to the scale height. The invariants of the

system are the quasi-geostrophic energy
: ' - (29)

- 13 2 125 '
€= JL- 3% (waB0?)  [[(252)
: B- . ~ﬁ‘5§ : Y‘E"_ >/g

the quasi-geostrophic potential enstrophy at aﬂy,level»'-

ol 2 s P ,
Z-[f-17, <f+v2w—'f9'a f.@‘ixk)z B
2 = 06 = 0,

Xy ‘ ‘ - Pe I, 9 _ v

(or more generally, the integral of any function of
potential vorticity) -and available potential energy at the
top and bottom levels '

)w +

0
uv]

I
~
S~
f f !
N
Lv]|

@

P <Y
g:lcv
i
@ =
@] I~
‘ Hle-
o |
: [\]
|
v s I -
a .
R

1.6 - The quasi-geostrophic barotropic approximation

If we consider vertical averagés with respect to density,
we may get rid of the pure baroclinic dynamics by
averaging separately each bracket in (26) rand using

boundary conditions (27, 28) which yields

G .>) <f,+‘7%“,ff*2(ﬁ‘*’+,f§7 ) - o B

o]
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where ¥ is the vertical average of v, and

2 O f P : .
)
Y (% :_> (34)
P_-P 8w B ‘ ‘

BT

is the inverse squared of the external radius of

deformation. The invariants are now reduced to energy

f.[ <(gradqr) + 12‘1"2>, : SR -f'.,l(35) v

and the barotroplc form of potential enstrophy -

s . Lo e 2 N . : . - . Fua
ff <f+v2\v+>\ (—w+ j’ﬁ)) ’ (36)
£ Sy .
- : 0 o o
or, more generally, the 1ntegral of any functlon of

potential vorticity.

2. NUMERICAL MODELLING OF CONSERVATION LAWS

Almost by definition spectral methods conserve exactly
quadratic ‘invariants ; -however, more complicated invariants
like energy: entropy or potential enstrophy in the general .
case, are not formally conserved, even though their
fluctuations may be small in practice. There is on the
contrary in finite difference methods enough degrees of
freedom to actually enforce most conservatlon laws in

numerical models."

2.1 The general flux form

' Let us consider an advected field g and a density p in the
general case. - The discrete form of the continuity. equation

is a mass-conserving flux form

3 ‘ -
=0 + ; Foi

i
SO

N
2t i s

where index i refers to any neighbour of the gridpoint
with index O, and FOi,is the mass flux from O to i ;.we
require of course that the "neighbour" relation be

symmetric, and that F = ~F

oi io® The flux form for g which
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conserves exactly the integral with respéct to mass of both

g and A(q), has,beep,given_by Arakawa

A

d - - | (38)
'a_(pq)o*Z[q]Oi Fos = 0
t i ‘ . :
with
A _ .
where GOi refers to the finite differencé between O and i.

2.2 Conservation of energy and potential enstrophvy in

isentropic coordinates

We shall write the equation of motion in Ehe'symbolic form.

v | - o : g2
— + NX[n¥]l + (T D) = o

- (40)

- o . . on Arakawa's C-grid (figure 1)
M u M u M = ] -
§ = (Gx,éy)‘ls,the (2

neighbour) finite difference

v o n \4 n v
operator, and n = (ffgxy)/[aP];
M uw M u M square brackets denote proper
averaging, and /' = (##) is
Figure 1. ' the mass flux.

2.2.1 Gradient term

The gradient term vanishes in the vorticity equation
(6x8 = 0). As far as this term is concerned, energy
conservation holds provided the same linear averaging operator

is used for mass fluxes and kinetic energy :

<

3Z/ 0P 2 u? v2
( [aelu' [5§§V ), [5' = [5'] + [f 1 (41)
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2.2.2 Vogticity term

The simplest averaging‘schémes we can use for the vbrticity

term are the following :

-X -y

Rl = ( _ﬁy ;Yr -T-]X ;X )
YV X

R, = ( -n Jx,»n ¥ )

| * y (42)

=Y g%

R, = ( -n" 2, nf « )
A : : —X —Y
-y -¥ —x -x

R4 = ( _;]'X v -ﬁy “@ )

and so on : the only rule being that the parity of the
number of. occurrences of each arithmetic (2-neighbour)
average —X and —Yy is kept the same for each quantity
n , u, v. It is readily seen from the symmetry properties
of the averaging operators that (R1+R3)/2,~R2, R4 are
" energy-conserving. If we consider now potential enstrophy
COnservétion} we.get the following relations corresponding
to R,, R

17 Rpr Ry Ry
T ST X
2 —_— e
ez n” . S
n‘atﬂ + 5 6xﬂ +,6yﬂ 0 (43)
o = =3
iz nn © . nn ~
n - + 5 Gxa + 2 § » 0 (44)
[N l/\Y
Az n¥q nxn*
n — + S ¢ + § # ~ 0
2 X 2 45
ot x g y (45)
ar (n¥) “ ) N o

Here tilda refers to a product between neighbours, and ~ .0
to the vanishing of the sum over gridpoints. Clearly only
R, is potential enstrophy-conserving, provided

=X

26 Y S ' ’ ‘ - (47)

The best one can do about the three other forms is to

combine them in order to get an isotropic average of
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n2/2,'which will therefore factorize out the mass

divergence. The combination R = (R3 + R4)/2 yields
! 2% 2
n g% + (”2) ( 8yt 82) ~ 0 (48)
while R = 2R3 - R, leads to
~ X
o, m (49)

— (S e+ s, ~ 0

@

the double tilda refering to the arithmetic average of
diagonal products. The error on potential enstrophy
conservation does not vanish, but gets considerably lower
ﬁof the two cpmbinétions, since usually 62¢+6yu‘<<“6£w~6ya}
Combining energy conservation with such a quasi-conservation
of potential ‘enstrophy leads to the following class of

vorticity terms

R, = [ (148) (Ry+Ry) - ER, + (1-6)R,] /3 (50)
The absence of an optimum scheme combining both energy-
and potential enstrophy exact conservations (at least at
this order of averaging in the vorticity term) is rather
puzzling. The only such scheme yet found has been worked
out for triangular (C-grid) meshes, as reported by Kim.
Bounaary problems will not be considered in the present

context.

2.3 Conservation of energy and moments of potential

temperature in sigma coordinates

In the most commonly used sigma system, although
simultaneous conservation of energy. and moments of
potential temperature is no longer straightforward, a
formal sdlution of the problem can nevertheless be worked

out. We take finite difference equations in the form
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DY, gnxv + 66 + [0] 81 =0 | (51)
Dt |

%E (68 P) | 8 .([e]A%?ﬂ+ 60([e]Af% = Q “ (52)

6§ ¢ +[6]8 I =0 | (53) .-
g—t §,P + g.% s, = 0. | - (54)

where .0 = P/PB, and (j?f;&) is the mass flux RB(y,é);;we,. )
have supposed V,6,1I,¢, £/ defined within layers, P and e« at.
the inteffaces. The thermodynamic equation has been used,ﬁ
in the general flux from described in secfion 2.1,
corresponding to formal conservation of © and A(8).
Successive use of the antisymmetry property of the § .
operators leads to guarantee formal energy conservatlon
provided [8] = [B]A‘ln the equation of motion and in -the

hydrostatic equation, and provided
<8 P 68 = P§ T [8], ~ O . - (55) .

which is not true in general. However, if PT‘= 0 and
A(s) = 62, (55) reduces to

—— O

k S 8o = oés (56)

which defines the optimum location of the levels in terms

of s = oKX, within layers of given'depthnag-

2.4 Conservation of enérgy and perturbatibﬂ énergy in’

sigma coordlnates

Again in sigma coordlnates, 51multaneous conservation of
energy and perturbation energy for the linearized eguations
is no longer straightforward in presence of finite
amplitude mountains ; but again a solution can be worked

out for this particular problem. This time we shall write
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the finite difference equations in the form :

DV : ’ -
— + ENXV + sl¢'] - [Bu'1dW = o (57)
Dt

e - SEam o= o | (58)

I
3 y/a _
b‘—a—tGUP + §._]+ GOW = {0 (59)

,;___(H 8§ P)+8. q%m ([H' ]w)+(1+§H [Dm]a P=0 (60)
ot

with

e - ] - 2

(61) -

where the basic stratlfled restlng state is spe01f1ed ‘by
h(P @(p), M(P), respectively its enthalpy, geopotentlal,

Montgomery's potential, and the inverse of static stability
g(p) = (an/ap) ( ham,/ ap)”! (62)

H', ¢' refer.to the perturbations of enthalpy and
geopotential at constant pressure. In (57) to (61),12, H',
3, are defined within layers, P, ¢', #,Ill. at layer
interfaces. The linearized equations obtain by dropping
the term BH' in the thermodynamic equation, and replacing

P by basic pressure P in the mass fluxes. The energy reads

P (T my ey) e (63

and the perturbation energy

— , 2 \2 2. , x
E Z[ZZ_ N 55__ N ( pdgp )B]aop (64)

When equations are written in this way,
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parallel arguments show that formal conservation holds for
both, provided the vertical and horizontal averages used
for the horizontal gradient in equation (57) are the

adjoint of those used in (61) .

3. ‘YSTATISTICAL MECHANICS OF SIMPLE INVISCID TRUNCATED
FLOWS

In -this section we consider quasi—geoétrophic flows only,
with their associated gquadratic invariants. The central
role¢blaYéd byﬁ£hesé’invariants is then particularly easy
to demonstrate in spectral form, i.e. on the base of the

eigenvectors of the Laplacian.

3.1 Statistical equilibrium of barotrobic flow without

mountains.
This is the simplest case. We consider truncated flow with
N real degrees of freedom : the spectral form of energy

.and ‘enstrophy then read

. |
> i (65)

S A RO T TR | AR . ‘
| , |
e = 2 K =z 3 =
L ko1 KK k=1 -

[\

where Kk is an eigenvalue of (X —\72)—l (finite difference
operators are allowed) and z is a real array in one-to-one
correspondence with the complex spectral vorticity array.
If N"is large enough, the equilibrium state of the system
is 'approximated by Boltzmann's probability law, in the
N-dimensional phase space '

R A e 12 - 2 '
ZER L exp -5 (aK, +b)z, (66)

]

k=1 27

which is obviously conserved in phase space motion. The

corresponding variance reads

2. _ ST ol T ‘
Y e —4.'(aKk+]'~.?)'. S Co (e

where parameters a and b are uniquely determined by the
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given values for B and 3 . 1In fact (65) and (67) yield
. . | :
Z (N—x(K—Kk)) =1 (68)
k=1 ,

"where b -has been eliminated, x = a} is the unknown and
= B/} . The rational function on the left-hand side has
N distinct real poles defining (N-1) intervals, one of
which contains zero since KminS;ngKmax’ It increases
within each bounded strictly positive interval and
decreases within each bounded strictly negative interval,
which yield (M-2) zeros : these have to be discarded since
l67) needs to be positive for all k. On the other hand,
(68) has N zeros and X = 0 is another solution to be
dlscarded. These exists therefore one and only one
solution for x in the interwval contalnlng zero, which
means one and only one possible equilibrium state. By
looking at the derivative of (68) at x = 0, one readily

sees that

N
as<o < > 1 :Z:KZ | (69)
N k _
k=1 ; ,
while a parallel argument exchanging P and 5 ’ and

K and K_l yields

ﬂ |

b <0

N .
Z; (70)

Case (69) (relatively small enstrophy) corresponds to a

Zna

concentration of energy within . larger scales, with a
quasi-equipartition of enstrophy at smaller scales ; case
(70) (relatively small energy) yields the reverse
concentration of enstrophy at smaller scales, quasi-
equipartirion of energy at larger scales ; the case in
betweeh eXhlbltS quasi-equipartition of enerdy at smaller
scales, quas1 equlpartltlon of enstrophy at larger scales.
If Qnerlhcreases resolutron for given enercy and enstrophy,

case (69) eventually holds : in the limit N—'oo, all the
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energy gets concentrated in the smallest mode,

equipartition of enstrophy holds between all other modes.

Statistical equilibrium spectra are thus seen to be far
from realistic because of the inviscid assumption ; however,
actual turbulent regimes can be seen as resulting from the

frustrated trend of infinite systems towards equilibrium.

3.2 Stg;istical eguilibrium of barotropic flow over

mountains
Using the same notations as in 3.1, and denoﬁing by‘hk:the
real array in one-to-one correspondance with toperaphic;
vorticity defined in (33), Boltzmann's probablllty law '
<§§q 2y 1 1is proportlonal to ‘ '
N

. exp —% (aKkzk + b(zk+hk)2>
k=1 , :

which after normalization, yields :

‘éjg N aK, +b 1/2 1 ' bh, 2 |
{z = , ?XP_i(aKk+b) z) + (71)‘i

k 1\ 27 aKk+b“

One therefore obtains for mean and variance :

— -1
<zk>4— | bhk(gKk+b) (72)

-1

<(z -<z > = (aKk+b)v

3 a3

2
k)
The statistical mean (72) is also a stationary solution of
the deterministic problem as noted by Salmon et al and
Bretherton et al, with a streamfunction proportlonal to

potential vorticity ¢ = . The non-zero mean is thé

L
only effect of the  presence of mountains : variance itself
is not modified. The fact that we obtain a linear form

of the general stationary solution y = F(n)Aié
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characteristic of the bias introduced by the truncated

spectral approach.

3:3 Statistical equilibrium of baroclinic flows

3.3.1 The simplest_two- layer problem

We first consider the simplest case of two equal layers
with constant pressure boundary conditions at top and
bottom} constant £, and no mountains. Equations (26,27,
28) then yield a system w1th vertical symmetry Denoting

-1

the 1nternal radlus of deformation by A , and the average

I
and difference values between the two layers by 1nd1ces

0 and 1 respectlvely, we get :

(74)

5 o '
9 -
where Aols the horizontal Laplacian, and Al A - A% .

Equatlons (74) and (75) can be understood as the equatlohs
for the two first spectral ‘modes in the vertlcal assuming
vertlcal symmetry, in other words barotroplc and first

baroclinic modes. The invariants can be restated as :

¢

< wvowo + l",lel"’l > - (76)

) 2 2
¥ - < (Botg) T+ (BT > (77)

6 - - Byby Avy > , L (78)
respectively,: energy (barotropic plus first baroclinic),
enstrophy -(again barotropic plus first baroclinic) and

correlation between barotropic and haroclinic vorticities.
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Boltzmannvs law. now. reads :

.0k

N
- 1/2
Jé%%ZOk,zlk} = N (AOkAlk /(2m)
o k=1
g ) ,
X exp- 2(AOk Ok+Alk lk+2czOkzlk) (79)
with .
_ AOk =ieﬂK +ﬁb’,A = akK

B = @K * P - (80)

d£ and K, 1k referrlng to the elgenvalues of ﬂﬁo l'and

‘qﬁl 1"'respectlvely (flnlte dlfference Laplacians allowed) .

Stralghtforward 1ntegrat10ns yield :

2, 2 o2y -1
SZox” T Al (g T ©) (81)
<z2> = aq (agA, - ¢ T (82)
1k 'k 0k "1k
J Z; 4 > _ 2 -1
0k“1k " = 2c (Agyhyy = ¢ (83)
Like in 3. l,~ 'will be negétive if the numberiof modes is

large enough, everythlng else belng equal ; this, and the
fact that Kk'<K£ for scales larger than the internal radius
of deformatlon yleld a strongly barotroplc flow at these
scales,‘ln the senseé that barotropic energy dominates
barocllnlc energy, and barotropic enstrophy dominates
barocllnlc potential enstrophy, while at smaller scales,

the flow becomes mixed barotropic - baroclinic.

3.3.2° The multi-layer Eroblem without mountains

Without mountains the vertical direction is separable when
one looks for the eigenfunctions of the 3-dimensional
Laplacian. We shall then consider L layers and the
corresponding-vertical eigenvectors Ag, 2=1,L, Like in
the 2-layer problem the two boundary invariants disappear

because of truncation, and we are left with L + 1
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quadratic invariants only energy and potential ~enstrophy

at each level. Using the same notations as before, we
shalllconSidér o . ‘

FQE.=;XK 22

ko Pk o S (858

"zsL:-AM'JL" Zovk Zavk © (85)

where the summation convention is used ; the invariants Z

. 2
correspond to the vertical spectrum of potential a

enstrophy, andAlz,l" is the discrete integral of the

product A A, A, .  Boltzmann's. law then reads :

t@[ Z'Zk} = ~‘qexp—l/2 (aKkﬂ,622|zu+b£A lzllll)zzlkzlllk(86)
with summation over all indices on the right hand side ;
a is the proper normalizing coefficient. The problem of
finding variances for a given k is thus reduced to an
eigenvalue problem. | - ‘
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4. CASCADE PROCESSES AND SUBGRIDSCALE MIXING “:. -/ -0 il

In pure two-dimensional flows; the tendency for energy tolﬁ
go towards larger scales while enstrophy goes towards SR
smaller scales, can be already foreseen in the trimodal
argument of Fjortoft ; a more general way- to look at it is
the tendency to absolute equilibria observed within the
framework of inviscid truncated dynamics, with the'obeerved
equipartitions up and down the spectrum ; in forced real
lews‘wherevequipartitions are not possible, cascade

processes will occur.

4.1 Phenomenology of cascade processes

The characteristic time scale for eddy distortions at
scale k ! if we assume homogeneity and isotropy of the:
statistical ensemble, can be estimated as

ko, -1/2 . ST S s T
(k) ~ p“E (p)dp - o (87)

where E(p) is the one-dimensional spectral energy ..
distribution ; here we simply assume that distorsions are
essentially produced by larger scales on smaller scales.

In turn, the energy transfer rate can be estimated as
e(k) ~ kE(k) / t(k) (88)

If we look for an inertial range where e (k) is constant,
i.e. energy is simply transferred across the spectrum by
nonlinearity, (87) and (88) yield

E2/3 k-5/3

E(k) ~ (89)

The transfer in such an energy inertial range will be

local : by local we mean that, in the distortion of an

eddy of scale k_l, eddies of scale p’l < k71

r~

dominate.

This is readily seen from (87) and (89).
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A parallel argument holds for an enstrophy inertial range,
where the enstrophy transfer rate

(k) = KE(X) / t(k) . . (90)
is supposed constant ; (87) and (90) now yield
E(k) " &2 k™3 (Log k/k) ~1/3 R (91)

and we see that the transfer in such an enetrophy inertial
range is nonlocal, i.e. dominated by eddies of scale
p—1“>'k-l, as seen from (87) ‘and (91)

As stated earlier, we can expect an enstrophy inertial
range to develop from the injection scale towards the
smaller scales where dissipation occurs, while a backward
enerdy inertial range should develop from the injection
scale towards 1arger»scales, if scales large enough are
provided for energy to fill in . Note that in the more
general case of 2-dimensional turbulence with B -effect and
topography, the arguments above are bound to fail in
speotral regions ‘where T (k) is domlnated by Rossby

wave frequenc1es or bV elgenfrequenc1es of the topography
operator . ' ’ '

4.2 A simple homogeneous turbulence model

The quasi-normal model of homogeneous purely 2- dlmen51ona1‘
turbulence reads

Ad 1.2 ’ ' : .

(3§ + 2vk )Z]_{_ + 22 pxq (P-Q) ap = 0 .‘ <(92)
G+ v, yA__+ R__ =0 - (93)
dt kpq’ “kpg kpg

with
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REP_‘I = (pxqg) ((P-Q) ZEZE + (Q-K) ZQ.ZE + (K-P) ZEZE)(94)

ZE =‘<c£ c_£> are the modal enstrophies, A X =

Re <C§ EE Cg> .are -the triple correlations related to

triads k,p,9g , k +p + g = 0, the summation in (92) is
_ 2,2, 2

\)kpq = \).(k +p“+g”) ,

where v refers to molecular viscosity. To obtain (92, 93)

bverzdistinct triads, K = k_z, and

the .hierarchy of moment equations has been truncated at
third order by using the Gaussian assumptlon to get rid of
fourth order cumulants. It .is well known since Ogura's
work that (92, 93) exhibit unrealistic behaviour : in
particular, .they may yield negative enstrophies. The
reasogﬁfor}this_beheviour was identified,iater on : an
important efﬁeetwof.the;discarded cumulants is to relax
trig%e%qgrrelations;;thereby‘produeing_an irreversibility
of the stetrst;eal_syetem even in the ahsence of.molecular
viscosity ; while (92, .93) is cleariy,reversible in that |

case.,.

This eddy viecosity‘effect can be recovered usihgian eddy-
dampedhmerkovianizedlform introducedﬁbkarszag. Basicaily,
ohe hee to replaee the melecﬁlar viscosity term in (93) by
an eddy-damping term, with characteristic time scale ek

fto be determined):

) A+ R -0 o (95)

ve kpg kpg

@ T *kpq
If opne further assumes that the revolution time scales for
the modal enstrophies- are much larger than relaxation time
scales, (95) can be replaced by its asymptotic form and

combined with (92) to give

d 2 _ (96)
(EE + 2vk™) ZE + ZIZZGEEH SEEH =0 .



189

— ) y 2 e - " » . :

It is readily seen that (96) is energy— and enstrophy-

conserving provided & is symmetric in k, p, g ; and that

kpg
positivity of Zk is automatically ensured.

4.3 An estimate for relaxation times

Taking :
-1 : ) 3

=Wt oug F g : | : (98)
a straightforward estimate for the eddy v150051ty uk is

the one extracted dlrectly from (96, 97)
. , ) ) ] o
e —Zem e’ (P-0) ((Q SEREE P)ZE) (99)

However, it has been shown by Kraichnan that (99)
overestimates the distortion of small eddies by the larger
scales : based on the full equation of motion, it does not
separate actual distortion (basically an effect of-
pressure) from simple sweeping of the eddies by large scale
advection. This effect is particularly unwanted in the
enstrophy inertial range, where the dynamics is essentially

governed by nonlocal effects.

The estimate we give here differs somewhat from Kraichnan's
"Test Fleld",model although it follows the same line of
thought. The pressure effect can be isolated by
considering the vortlclty and divergence equatlon in full
(here spectral) form. In the absence of pressure, a pure

rotational field induces a dlvergence tendency

= = -Z(p_xg) POt 2y | - (100)
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obtained. by dropplng all terms contalnlng $ 1n the
divergence equatlon 'This germ of dlvergence in turn:

reacts on the vorticity field through
| dck | Zk T '3 B

. 78 E
- Rd e

obtained by dropping all terms not containing $§ in" the
vorticity equation. The summations in (100, 101) are not, -
on distinct triads, but on either p or g (non symmetrized
forms). Applying to (100, 101) the same process. of
markovianized eddy-damping as used in 4.2 yields the

modified eddy viscosity form :

e Z ra)® x . gr0Z, (02

again in non symmetrized form, unlike (99) . ‘ﬂooking for
the influence of very large scales (P.»«), we see that the.
coefficient in (102) remains bounded, while its counterpart
in (99) is 0(P). More precisely, an estimate of (102) in
the isotropic case is , T i e
My =<%./fk p2 E(p)dé)l/z i R ,(103)~;»;

in the nonlocal limit ; (103) corresponds well to the

phenomenological estimate (87).

4.4 A model of the enstrophy inertial range in the’

isotropic case

In the enstrophy 1nert1al range (96, 97 98 102) can be
simplified by u51ng the nonlocal assumptlon P > K- Q :
(103) can be used in lieu of (102) and

— 3 2 M - : . | | ‘ ‘
Skpq = sin” (p;g) P/Q Zp(Z Zy) s (19%)
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in lieu of (97) ; all indices now are scalar because of the
isotropy assumption and (104) is valid to second order'in
K/P. Going from discrete summation to continuous integral
and using the identity

sinkK g F(q)—F(k))dq= L d OF (105)
“4§-E|?p o3 < 2 51 ox © 0(P)

where K is the interior angle'opposite to k in the (X,p,q)
triangle, yields ‘

<g_ + 2vk2) Z+ u 8 D (2/2).=0 " (106)
dt BK—l 0K

which has to be heuristically modified to

<g_ + 2vk2> 7 + 9 d (uz/2) =0 (107)
\dt 3x L oK ; .

in order to recover energy and enstrophy conservation.  The

enstrophy- and energy fluxes read

(uz/4) -(108) ..

=
il

0
2 3%

g = (K2-1) (uz/4) (109)
0K '

=
il

The energy flux is the sum of two parts : one part directed
towards the smaller scales and correlated locally to the’
enstrophy flux, and another part, directed towards the
larger scales, which corresponds to Kraichnan's definition
of negative eddy viscosity.‘ Outside the dissipatioh réﬁ@e,
the stationary solution of (106) is u% = K, in other words'
(91) when u is given by (103) ; in that case the enstrophy
flux is constant, and the two parts of the energy flux are
exactly opposite to each other. The enstrophy inertial

range can therefore be modelled numerically (k bounded by
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’kma#) by using (107, 103) with the boundary condition

-HE =0 at k = kmax (110)

4.5 A model for éubgridscale mixing in the isotropic case

The model described in 4.4 actually allows numerical
modeling in the inertial range. TIf we want to model
subgridscale mixing, we further need a statistical model of

the trﬁncated dynamics. Nonlocal expansions again yield

2 ~
d+2 k™)z + 0 d 3 ulkk )(z&k)-Z(k__))FO0(111)
(& 31 OF ( max e )50

for dynamics truncated at k = kmax' The functional form
of the "truncated" viscosity p is given in Basdevant et
al. It departs significantly from up only in the vicinity
of gmak' where it goes abruptly to zero. The enstrophy and
energy fluxes are given again by (108, 109) with ¢ instead
iof ps 'The boundary condition is again (110), but this . time

it also yields I, (k ) = 0 because Z (kma ) =0 @ we

thus get all theZdegifed conservation propeﬁties. Note
that an exact solution of the truncated dynamics model
(111) is the equipartition of enstrophy between modes.
This is a desirable feature, although we have seen that
such équipartitions are not in fact governed by nonlocal
dynamics : it means that replacing the exact nonlocal
dynamics of the truncated model by (111) will not perturb

the”equilibrium solution.

The model for subgridscale mixing follows by difference,
from (107, 111) ; one must however remember that the

whole theory‘suffers from the following severe restrictions

(i) the assumption of isotropy at all scales has been made;
in particular, isotropy of the larger scales is assumed in

the expression for eddy viscosity.
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(ii) linear terms have been excluded ; in particular, the
effect of interactions between Rossby waves and turbulence,
and the influence of mountains.

(iii) barotropic flow only has been considered.
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