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1. Introduction

Principally two reasons may be given for designing a forecasting
scheme which, along with the conventional prediction of meteorological
fields, produces a state-dependent estimate of the reliability of those
predictions. In the first place, this permits the identification of
those flow regimes which have more (or less) predictable consequences
than others. Such additional information would be a valuable aid to the
users of such forecasts. Secondly, a prediction of forecast error valid
at analysis time would allow a quantitative blending of the forecast
with the new observations. Stochastic dynamic forecasts have the
potential of achieving this objective although the penalty to be paid is
a substantial one in additional computing resources. However, Monte
Carlo approximations to stochastic dynamic forecasts may be possible
with present resources. |

Fig. 1 is an example of the type of information produced by a
stochastic dynamic forecast. This was made using a hemispheric baro-
tropic spectral model with 105 real spectral coefficients (rhomboidal
truncation at wavenumber 10). The standard deviation field is a measure
of confidence that may be placed in the geopotential height fie]d and,
as expected, is rather inhomogeneous. Such a display presents only a
small part of the total information contained in such forecasts because
the technique permits the prediction of the whole covariance structure
as well. Al1 of these second moment statistics may be utilized in
depicting the uncertainty information in various ways (Epstein and

Fleming, 1971), as well as forming part of an integrated analysis
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procedure (Epstein and Pitcher, 1972). Fig. 1c is the standard devia-
tion of the subsequent analysis and is less than that of the forecast or

observation (not shown) alone.

2. Formulation of éfochastic dynamics .

Consider a physical system of N parameters X; (i =1,2,...N). The
state of the system at any instant may be represented by a point in an
N-dimensional state or phase space, where the coordinates of that point
are the values taken on by each of the X Subsequent evolution of the
system traces out a path in phase space. Whenever the initial state is
subject to uncertainty, its specification is limited to a hypothetical
ensemble of phase points distributed according to some assumed proba-
bility distribution. The size of this ensemble reflects our uncer-
tainties in the observatidn and analysis of the initial state of the
systai. Of particular interest is the prediction of the ensemble mean,
;s this ig the best estimate of the true state based on the criterion of
minimum mean-square error, énd also the ensemble variance, which becomes
a measure of the uﬁcertainty in the mean. The formalism for achieving
this consiéts of énsehb]e éveragiﬁg the equations gdverﬁing the system.
 To the wriﬁer's‘know]edge, stochastic dynamic prediction, as discussed
~in the meteorological Titerature, has been limited to quadratically
:ﬁon11near systems. The cénsequence of this restriction is considered
later. »As’is typical of such systems, the prognostic equation for each

X may be putvin the form
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dxi/dt =Xy = zk aijk X§Xy - § bij X; t ey, (2.1)

Js
where 335k bij and c; are constants. Epstein (1969) derived prognostic
equations for the mean Wy o= E(Xi) and covariance O34 * E(xi - ”1)(Xj -

uj), where E denotes an ensemble average. The results are

U-i = Jzk a1Jk(uJUk + OJk) - g,‘ b'IJ Uj + Ci > (22)

O35 T kgg Lagiq (i 050+ Hg 955+ Ty

g (e o5 T g g+ Ty,)]

- E (bik O * bjk Ti) (2.3)

P (s = i) (x

i o Mg ) (x - ). Egs. (2.2) and (2.3) are

where Tijk © E(x

generally referred to as the stochastic dynamic equations.

Except for the study of Tow order systems (Fleming, 1971a, 1971b,
1973), the approach just outlined has some rather severe limitations if
application to current numerical weather prediction models is contem-
p1ated. Foremost among these is the excessive computation time required
over a conventional forecast for a system with a reasonably large number
of X; - In an N-parameter system a total of N(N + 1)/2 second moment
quantities exists, and this represents an increase in computation time
of roughly N orders of magnitude. This of course is intolerable in

models where N is the order of 105. No doubt an approximation in the
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form of a subset of (2.3) could be used in which not all covariance
quantities were predicted, but it is not immediately clear how this
might be achieved. Secondly, the above formulation is limited to
quadratically nonlinear systems and, while this appears to be the
dominant nonlinearity in atmospheric prediction models, a reformulation
taking into account higher order nonlinearities, as are present in
certain local physical processes such as radiative exchanges for example,
would pose some severe mathematical difficulties and an extra computa-
tional burden. Thirdly, stochastic dynamic prediction models ought to
be spectral rather than grid point in order to reduce the total number
of covariance quantities, but the programming of such models to take
advantage of the‘spectral transform technique of Eliasen et al. (1970)
is by no means obvious. Finally, Egs. (2.2) and (2.3) are an unclosed
system and cannot be solved as they stand because of the appearance of
third moments Tk Merely discarding third moments is one closure
which has been used successfully by the writer (1977) in making short
range forecasts, but its performance has not been tested with forecasts

that exceed one week.

3. Monte Carlo forecasting

Many of the practical difficulties associated with the solution of
the stochastic dynamic equations may be substantially alleviated, if
not eliminated entirely, by utilizing a Monte Carlo approach. Leith
(1974) has advocated such an alternative and investigated the theoreti-

cal skill of the Monte Carlo procedure by application to a two-dimensional
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turbulence model. Instead of predicting the moments of the forecast
ensemble directly, a sample of points is chosen at random from this
ensemble initially, a forecast is made starting from each phase point,
and then the moments are estimated by averaging over the statisticé]
sample. Of course such a calculation could be repeated with a different
sample, thereby obtaining a different set of statistical estimates.
The hope, however, is that we may choose, within the practical limits of
computer resources, a sample size m sufficiently large to produce stable
statistics. The total computation involved is proportional to mN, but
if m << N we may capture the advantages of stochastic dynamic prediction
without the penalty of excessive arithmetic. Moreover, the remaining
Timitations of the stochastic dynamic system of equations discussed
previously are not present with the Monte Carlo procedure. However, the
problem of moment c1dsure is replaced by the sampling problem in deciding
what value to choose for m. This must be done essentially by experimentation.
The first step in carrying out a Monte Carlo forecast is the
generation of a sample of initial states chosen at random from a hypo-
thetical ensemble of phase points. We assume the existence of an unbiased
initial state vector X which might be an optimal blend of all the
information available. This state should also be compatible with the
intended forecast model in satisfying any necessary initialization
requirements. For primitive-equation models this could be a linear
(Flattery, 1970; Wi]]iamson, 1976) or nonlinear (Machenhauer, 1977;
Baer, 1977; Daley, 1979) normal mode initialization, for example. The

initial sample may now be generated by choosing X; = X + 4 (i=1,2...m).
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While the g; are chosen at random, they must be done so according to
some definite probability distribution, and in view of our limited
knowledge of the statistical nature of analysis error, it is convenient
to take € to be normally distributed with zero mean and covariance
matrix C = E(e €'), which is presumed known. The prime denotes a vector
transpose. C is derived from the error properties of the observational
and analysis procedure. Nonuniformity in the diagonal elements of C
reflects the inhomogeneity of analysis errors, whereas the off-diagonal
elements reveal the spatial correlations in analysis error, both hori-
zontal and vertical. This covariance structure should be accounted for
in generating the €5 since the evolution of the forecast ensemble

depends not only upon its initial size, as given by 05> but also upon

j
its initial shape, as measured by Oij(i # j). Evidently then, the
generation of the initial sample is a nontrivial matter as the matrix C
is not, in general, diagonal. Transforming to a representation in which
C is diagonal, generating the sample, and then transforming back to the
original representation is possible, in principle, though in practice
such a task wou]d be computationally burdensome. Usually the initial
sample will be generated in some approximate fashion, and one such
procedure is discussed in the next section.

Once the initial sample has been generated, the model integrations
can be performed. However, in the case of primitive-equation models,
each sample member cannot serve directly as an fnitia] condition since

there is no assurance that the wind and mass fields are dynamically

balanced. This is a consequence of the fact that not all dimensions in
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phase space are independent of one another. To the extent that a
dynamical balance exists between some of the elements of X, each element
of g_may not be perturbed at random without upsetting this balance.
Consequently, an initialization step must be performed to suppress
spufious gravitational osci]1afions which would otherwise appear during
the course of the model integrations. Whether a relatively simple
Tinear initialization (say) will suffice can perhaps best be answered by
experiments.

The subsequent evolution of this sample produces, in the case of a
perfect model, a set of equally 1ikely representations of the true state
of the atmosphere. The sample variance reflects the uncertainty in the
sample mean as an estimate of the true state, and shows the character-
istic predictability error growth arising from nonlinear interactions.
This internal growth of error does not take into account model imperfec-
tions. As such, the predictions of error will be unrealistically low in
the absence of some parameterization of external error growth stemming
from model inadequacies. Such a parameterization has been considered by
the writer (1977) for a stochastic dynamic forecast, wherein random
forcing terms were added to the dynamical equations. The simplicity of
the basic forecast model required rather large random forcing terms and
so reduced somewhat the advantage of state-dependent error growth.
However, with every model improvement comes the expectation that less
reliance will have to be placed on artificial prescriptions of external
error growth. Nonetheless, this will remain a continuing problem

whenever realistic error predictions are desired. Its solution may lie
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in a more detailed investigation of the nature of forecast error itself.
On the other hand, predictions of sample variance based only upon
internal error growth may be useful, even now, in making relative

assessments of regional forecast reliability.

4. Application to a barotropic model

‘We turn now to the consideration of a relatively straightforward
manner of generating an initial sample that possesses a statistical
structure reflecting both inhomogeneity and spatial correlations among
analysis errors. The covariance structure of € is taken to be of the

form

ELe(htq) €00sp)] = FOqsiydpsity) s (4.1)

where e(A,u) denotes the error at a geographic point, A is the longitude,
W =sin ¢, and ¢ is the latitude. Choosing spherical harmonics as basis

. functions, we represent e as follows:

m ' m . m
e= ) (A cosmi+B. sin mA) P ()
mon ( n n n

T I (4.2)

m m
Cn cos<mk - en) Pn

2
m,n

m m

where A~ = C m
n n

m m _
cosen and form >0 Bn = Cn

..m m 0
s1nen. If en and Cn.are
assigned at random, then (4.2) permits the calculation of a random error
field. The covariance structure of (4.2) may be easily evaluated and

~assumes the form:
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2
Elegep) = E(Cﬁ ) Pa(iy) Ppu,)

5
m m m
) Cn cos m(x1 - kz) Pn(”1) Pn(uz) , (4.3)
where in the derivation of (4.3) all of the ew and Cﬁ are assumed to be
uncorrelated. This assumption is relaxed subsequently.
2
A degree of arbitrariness may be exercised in assigning E(éﬁ )
2

and Cm . One choice is to relate these to the climatological variance

spectrum by taking
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where YE is the natural variance, and k is a constant chosen such that
E(ez) as calculated from (4.3) matches the variance of analysis error.
The presence of the functions f](n) and fz(n) introduces relative scale
dependence in the analysis error. In the following f](n) = fz(n) =n,
and this implies a linear increase with wavenumber of relative error
variance.

Given in Fig. 2 is a normalized plot of (4.3) for ¢ = 45°. While
this is probably not an unreasonable representation of the autocorrela-
tion of analysis error, the statistical nature of this quantity is not
well known; no doubt it depends upon the nature of the particular
analysis scheme. Once the shape of this function has been established,

however, the C? in (4.3) may be reassigned for a more realistic representation.
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From (4.3) it is apparent that the variance of analysis error is
constant for a given latitude. Nonuniformities in E(ez) may be accounted
for most easily by summing (4.2) for a given set of eﬁ and Cﬁ, and then
selectively enhancing the error field in those regions where the analysis
errors are known to be greater. This is equivalent to permitting correla-
tions between the eﬁ in (4.2) although the procedure just described is
much easier to carry out in practice. The modified error field may then
be used to perturb X_in physical space, or transformed back to the
wavenumber domain if the elements of X are spectral coefficients. The
spatial autocorrelations are not substantially affected by this additional
step.

A series of five-day Monte Carlo forecasts has been made using the
above statistical model for initial error. The dynamical component is a
spectral barotropic model with triangular truncation at wavenumber 18.
The error growth properties are given in Figs. 3 and 4. The average -
root-mean-square forecast error of the sample mean is given in Fig. 3
for a three-month winter period. A choice‘of m = 10 was found to give
relatively stable statistical estimates of second moment quantities.

The growth of the sample standard deviation averaged over these 18
winter cases is also shown.

In Fig. 4 1is presented one half of the mean-square forecast error
as a function of wavenumber. Also shown is the spectrum of sample
variance labeled in forecast days. The difference between the respec-
tive sets of curves is indicative of the external error growth for this

model. It is clear that a Monte Carlo prediction of internal error
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growth is a rather unrealistically low estimate of the actual error for
this model. While existing operational forecast models would fare
somewhat better in predictions of both the mean and variance, the

improvements would not be dramatic.

5.  Outlook

Realization of the full potential of Monte Carlo forecasts must
await further model improvements, and perhaps a more complete under-
standing of the effects of initial error on model evolution. Somerville
(1979) has shown that a consideration of both of these aspects of the
problem results in an improved prediction of ultra-long waves.

Since steady advances are expected in computer technoiogy, further
research on Monte Carlo forecasting is warranted in anticipation of
the day that a full statistical-hydrodynamical treatment of the atmo-

spheric prediction problem may be possible.
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Fig.

Height (a) and standard deviation (b), both in meters, of the
500 mb surface from a one-day stochastic dynamic forecast. The
standard deviation as derived from a subsequent stochastic
analysis is shown in (c) (from Pitcher, 1977).
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Fig. 2. Model of autocorrelation of analysis error.
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RMS error of sample mean (solid line), and sample
standard deviation (dashed line) for 18 Monte
Carlo forecasts. The error of a forecast based
on climatology is designated by M.
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Wavenumber n

One half mean-square error of sample mean (solid line),
and sample variance (dashed line) for 18 Monte Carlo
forecasts. Climatological variance is given by the upper
dash-dot line.
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