28

METHODS AND PROBLEMS OF FINITE DIFFERENCE REPRESENTATION
OF MOUNTAINS IN NUMERICAL WEATHER ANALYSIS AND PREDICTION

Fedor Mesinger
Department of Meteorology, University of Belgrade

Yugoslavia




29

§umma31

This note attempts to give a brief outline of the existing
methods and problems of the representation of mountains

in finite difference models for numerical weather
prediction, as well as of the associated problems in

data analysis and initialization. The emphasis is on

providing guidance to the bibliography on these subjects.
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1. Finite difference horizontal and vertical representation

of mountains in mumerical models

There exists a variety of possibilities for choosing the
vertical coordinate (e.g. Kasahara 1974, 1977a), and each

is associated with its own problems of representing topography.

A number of numerical models uses coordinates that intersect
the earth's surface. Some of these coordinates are time-
dependent, e.g. isentropic coordinates (Eliassen and
Raustein 1968, 1970), or pressure coordinates. Fixed
geometric height has also been used as the vertical coordinate,
notably in the NCAR general circulation model (Kasahara and
Washington 1969, 1971; Oliger et al. 1970).

With such coordinates usually differencing schemes are used
which require vertical extrapolation to obtain fictitious
subterranean variables (Bleck 1974; Shapiro 1975; Trevisan 1976).
An alternative is to physically block the flow. This presents
inconveniences if the coordinate surfaces are moving

(Katayama et al. 1974), and/or may be associated with
difficulties in trying to make an efficient use of fast
parallel processor or pipeline computers (Washington and
Williamson 1977). It would appear, however, that even apart
from this point of "vectorization" the experience with the
treatment of mountains in the NCAR z coordinate model was

not entirely satisfactory. It is possible that better results
would have been obtained by use of a space staggered grid,
since it would require no space-uncentered differencing and

no fictitious subterranean variables. The blocking method is
the standard method of incorporating terrain effects in ocean

models.

In atmospheric prediction models by far the most frequent
choice is the so-called sigma system (Phillips, 1957), in
which the earth's surface is always a coordinate surface.

The situation is essentially the same if a "transformed
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coordinate" system is chosen with some other coordinates

following the ground surface.

The pressure gradient force in the sigma system takes the
form

-V 0 - cquS.
9 (1)

The sigma coordinate is here being defined as
g = (p-pT)/(ps"pT) ’

with P denoting pressure at the top of the model atmosphere,
p, pressure at the surface, and other symbols having their

usual meaning.

Over sloping terrain the two terms in (1) may in absolute
value individually be more than an order of magnitude greater
than their sum. A relatively small error in one of these
terms, therefore, can result in a large error in the sum.
Thus, great care is needed if the computation of the pressure
gradient force is to remain realistic over Steep mountains.
For a dramatic illustration of the problem, note that it
seems impossible to achieve an error-free representation

of an atmosphere in hydrostatic equilibrium, with no hori-
zontal pressure gradient force. Namely, the two terms of

the pressure gradient force will, in general, not cancel.
That means that the vertical change in geopotential is

partly misrepresented as a horizontal change in the geopotential
of a constant pressure surface. Various procedures have

been suggested for minimization of this error.

The GFDL group (Smagorinsky et al., 1967) has found it useful
to calculate the pressure gradient force on pressure surfaces,
after a vertical interpolation from sigma to pressure surfaces.
However, this still did not appear to be quite satisfactory
(Kurihara, 1968). Corby et al. (1972) proposed an elegant
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scheme in which an exact caticellation of the difference
analogues of the two pressure gradient force terms is

achieved when the temperature is a linear function of 2np.

The method used by Arakawa consists of maintaining the
property of the atmosphere that the vertical integral,
with respect to mass, of the pressure gradient force is
a potential vector when the ground surface is horizontal.

Namely, we have

Ps Pg

_lj Vo dp = - [Vf

p
Pr Py

Qi+

¢ dp - <P8Vps]_ (2)

Thus, only when there is a non-horizontal boundary surface
the integral of the left side of (2) along an arbitrary
closed curve can be different from zero, resulting in an
acceleration of the circulation of the vertically inte-
grated atmosphere by the pressure gradient force. Arakawa
has shown (1972; Arakawa and Lamb, 1977) that this property
can be maintained in the finite difference analogue of

the equations.

The Arakawa method, however, is associated with use of
different analogues of the hydrostatic equation for the

two terms of the pressure gradient force. Values of geo-
potential, needed for the analogue of the first term of

the right hand side of (1), are calculated using all
temperatures of a vertical column of the grid; the second
term, giving the difference in slopes of the constant sigma
and the constant pressure surface, is calculated locally.
It is possible that hydrostatic inconsistency of this kind
can lead to serious errors in the vicinity of steep

mountains (Rousseau and Pham, 1971; Janjid: 1977).

In a similar way, the method of Corby et al.is also hydro-
statically inconsistent. A space centered scheme is used

to calculate geopotentials of sigma surfaces, and a forward
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scheme (in vertical) is used to calculate the correction

term (the second term of the pressure gradient force).

The difficulty is, of course, a result of the relatively
large hydrostatic variation that is present in sigma
surfaces over a Sloﬁing terrain (e.g. Sundgvist, 1975a).
Therefore, Phillips (1973) and Gary (1973) suggest that
a suitably chosen hydrostatic component be removed from

each of the two terms of (1). This can be done by defining
®(x,y,p,t) = d(p) + @' (z,y,p,t),

where ®(p) is a conveniently chosen simple function of p.

Substituting this into

- 3¢
Vet o 3g v In (pg - Pp) s

(3)

which is equivalent to (1), one finds that the pressure

gradient force can be written as
- ’ ad’
Vo' + 0 55V In (- p,). (4)

The magnitudes of the two terms now being considerably
reduced, a higher accuracy of the finite different calcul-

ation may be expected.

An additional device that can be used to reduce a specific
error or achieve another desirable objective is to have a
"layer" (instead of a "level") model (Arakawa, 1972), and
then optimize the heights of the velocity components within
the layers. Brown (1974) in this way obtained a dramatic
improvement in calculating temperatures from the obhserved
geopotentials with the Arakawa pressure gradient force
formulation. This procedure has also been used by

Phillips (1974), combined with his "reference atmosphere"




technique, for a comprehensive study of the Arakawa's method,
its possible modifications and integral properties. The
resulting schemes of Phillips, the one of Corby et al. and

a number of their variants, as well as associated integral
constraints, have been further investigated by Nakamura
(1978).

A‘novel approach has been introduced by Janjié (1977). He

points out that instead of (1) or (3) the pressure gradient
force in the sigma system can be written in a more general

form as

3¢ 4
—v0¢ + 'a_cvcc (5)

where ¢ is an arbitrary monotonic function of pressure.
For hydrostatic consistency, the same function is chosen
for vertical differencing in the hydrostatic equation.

L can now be defined.so as to minimize the non-linear part
of ¢ (z), and this will reduce the error. In the HIBU
model (Janjié, 1977; Mesinger, 1977), Janjic¢ has chosen

the function ¢ = anp.

The schemes of Arakawa, Corby et al. and Janjiéﬂ and some
variations of the scheme of Janjié, have recently been
compared, in a number of ways, by Lipovscak (1979). For
the profiley ¢(p) used in the note of Phillips (1974), he
obtains smallest errors with the Janjiélscheme, and largest

errors with the Arakawa scheme.

However, even the hydrostatically consistent schemes, such
as those of Janjid and that used in the ECMWF model
(Burridge and Haseler, 1977), as can bhe seen from an example
given by Janjié (1977), have a consistency criterion. It

can be written as

6 $), bs s § ¢ Ao (6)

where As stands for Ax or Ay. Thus, increasing the
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steepness of model mountains, and increasing the vertical
resolution, may lead to a violation of the hydrostatic

consistency of the scheme.

A combination of the sigma system and a blocking procedure
to deal with steep wall-type mountains has been proposed
by Egger (1972a, 1972b, 1974), and used for studies of

lee cyclogenesis.

One disadvantage of the sigma system are large errors away
from mountains, at the tropopause level and in the
stratosphere. They can be eliminated by changing to quasi-
horizontal (e.g. pressure) coordinates above a given level,
for example as done by Arakawa and Lamb (1977).

For several of these schemes (Kurihara 1968; Arakawa 1972;
Corby et al 1972; Miyakoda 1973; Gilchrist 1975; Corby et al
1977; Arakawa and Lamb 1977; Janjic¢ 1977) an associated
procedure to ensure consistency in transformation between

the kinetic and potential energy has also been developed.

It has been suggested by Arakawa that conservation of
potential enstrophy within advection terms may be very
important for a realistic simulation of the dynamical effect
of mountains. Schemes that conserve potential enstrophy

have been constructed by Sadourny (Burridge and Haseler 1977),
and Arakawa and Lamb, both for the fully-staggered "C" grid.
With the C grid, however, use of the pressure gradient
averaging technique of Janjic (1977), eliminating a
topographically induced sigma system inconsistency in
elevations of the pressure gradient and the Coriolis force,

appears not to be feasible.
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An improvement in simulation of the barrier effects of
mountains can be achieved by a judicious construction
of the grid point terrain height values (Mesinger 1976,
1977; Bleck 1977). However, the increase in horizontal
resolution appeafs to be the only ultimate solution to
this problem. On parameterization of the effects of
still smaller-scale mountain elements very little
progress has so far been made (Sawyer 1959; Cressman
1960; Egger 1970, 1971; Miyakoda 1973).

Recent experiments of Rowntree (1978) give a sensitivity
test of the barrier effect. With enhanced mountains,
doubied in height with less enhancement for larger massifs,
the mean 500 mb map was generally more like the observed
one for the forecast period.

A number of other computational problems are produced by
mountains or related to the possibilities for
representation of mountains in prediction models. For
example, in defining boundary conditions for a nested
grid model, care must be taken not to violate the
hydrostatic equilibrium in interpolations from the coarse
to the fine mesh (Miyakoda and Rosati 1977). Inside the
integration'region, a careful treatment of the smallest
resolvable scale motion components; e.g. of the
propagation of gravity waves between neighbouring grid
points if a semi-staggered ('"B" or "E") grid is used
(Mesinger 1975; Janjic 1974; Mesinger and Arakawa 1976;
Janjic 1979), enstrophy conservation in advection terms
(Arakawa 1966; Grammeltvedt 1969; Arakawa and Lamb 1977;
Janjic 1977; Mesinger 1979), and energy consistency in
the thermodynamic equation, will to a large extent
eliminate the need for an artifical lateral diffusion
and for the smoothing of model topography, and thus will
improve the ability of the model to represent smaller

scale mountains.
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2. Data analysis, initialization and assimilation problems

A non-trivial problem in sigma coordinate models is how to
convert the initial geopotential (or temperature) from
pressure to sigma system. Two main alternatives appear
available. The usual one is to interpolate vertically
the geopotential (or temperature) to obtain initial
conditions on sigma surfaces. However, in anticipation
of the inability of the two-term sigma system
representation of the pressure gradient force to reproduce
an atmosphere in a hydrostatic balance, it was suggested
by Sundgvist (1976) to attempt to reduce the error by
performing a vertical interpolation of the pressure
gradient force, rather than of geopotential, and then
solve for temperature on sigma surfaces. The method has
recently been tested by Mihailovic (19792). The results
show high sensivity of forecasts to the choice of one of
these two vertical interpolation methods, existence of
technical problems in the non-uniqueness of the solution
for temperature, and possible advantage of the Sundgvist
proposal. However, the errors in the temperature field
may then be larger than in the case of the conventional
procedure. When, on the other hand, the geopotential
(or temperature) is vertically interpolated it is the

pressure gradient force that is subject to an error.

A very difficult problem is posed by the need to obtain
initial data in a proper balance with the mountain as it
is present in the model. A lack of such balance creates
spurious disturbances in the initial stages of the
forecast (Egger 1972b; Bleck 1977). It is, of course,
possible to solve the balance equation with the
mountains present (Holmann 1971; Sundqvist 1973Db).

A procedure to achieve a more refined initialization

with quasi-geostrophic divergence
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included (Phillips, 1960), has recently been suggested by
Kasahara (Kasahara, 1977b; Browning et al., 1978). Some
work is under way in this field in the Meteorological
Research Institute, and at the Japan Meteorological Agency,
Tokyo (Masuda, 1978; Kondo, 1978). It is being attempted
to obtain a field adjusted to a model mountain by a
numerical experiment, with a view to possibly super-
imposing the mountain perturbation field when initializing
the real data; and to solve the balance equation on

pressure surfaces which include holes produced by mountains.
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