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1. Introduction

Whilst there is no doubt that all scales of topography
exert a significant influence on atmospheric flow little
quantitative information exists, and even our qualitative
understanding is incomplete. Our weaknesses are both
theoretical and observational.

This document seeks to provide a simple description of
the processes involved in momentum transfer between the

Earth and its atmosphere.

2. Form drags

We may define form drag as being due to the viscous
dissipation of the standing disturbance produced by the
topography. This definition admits atmospheric effects
on two widely different scales. On short scales it
covers the "aerodynamic'" forces arising in flow over
obstacles. Whilst on the large atmospheric scales it
includes the dissipation, through the boundary layer
pumping mechanism, of the relative vorticity produced by
the compression of fluid filaments passing over the
topography. | ‘

a. Small scale "aerodynamic' forces

On the scales of vegetation, trees and buildings
these forces are considered part of the turbulent
atmospheric boundary layer. The Reynolds numbers of these
scales are large and these effects can be parameterised
through a drag coefficient. For example the surface stress
T = pCG ng where Ug is the geostrophic wind and CG the so
called "geostrophic'" drag coefficient. Having been subject
to extensive laboratory and field measurements we have some
ideas on the relationship of CG to the nature of the
terrain. This usually involved a discussion of the "rough-
ness length" of the terrain. For a smooth surface such as

the sea in light winds there is no topography and the stress




234

is communicated by viscous forces alone. CG has a value

of about 0.5 .. 10-3. However as we proceed to, say,
short grass and to trees Cg might have values of~1.0 . 10_3
and~2.0 ., 10’3 respectively. Thus on these scales CG is

not a strong function of the terrain.

If we consider a single element of topography with height h
and scale L exposed to a flow UO the "aerodynamic" pressure
force will, if the only force, give a stress

~ % Cp UJZ By, where C is drag coefficient

which will be 0(1) for bluff obstacles but less for smooth
bodies. Such a pressure force is clearly unable to give a
direct account of observed effects on small scales. The
situation is complex due to the turbulent nature of the
flow, the influence of one element on another, and the

surface mounting of the elements.

We have very little. information on the effect of larger
scale,say 100 m to 104 m,topography. If the pressure
forces given above .were to be realised as a net force, the
effects of topography on this scale would be dramatic. On
these scales there is almost no reliable data but indirect
inferences based on aircraft observations suggest that
extrapolation from smaller scales is the current best
estimate. In this case even mountains might only have

Cg ~ 3.10"2. The actual effects on this scale could be
very different but as yet there are no sound sources of

data, or theories.

As a first step in this diréction Mason and Sykes (1978,
1979) have made numerical integrations of the Navier-Stokes
equations fo examinéylaminar flows over surface mounted
obstacies. The results serve to illustrate possible pit-
falls but have no direct application to turbulent flows.
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For 2-D flows they found that for steady flows the
pressure force was nearly balanced by a reduction in
viscous stress giving a very small net effect. However

at high Reynolds‘numbers and steep slopes unsteady flow
occurred with eddy shedding and here large drags of the
order of the pressure force were found. For 3-D flows

at low Reynolds numbers and/or shallow slopes little

net effect was found,as with the steady 2-D case,but for
steep higher Reynolds number cases, even though the

flow was steady, a large force of the order of the
pressure force resulted. 1In all these later cases the
flow had separated upstream and generated "horse shoe"
eddies. These longitudinal eddies arise as the basic
vortex lines of the boundary layer shear are pinned to
the front separation and stretched out down stream.

Mason and Sykes cbnclude that in laminar flow over surface
mounted objects, the generation of mean flows transferring
momentum to the surface séem essential for a significant

increase in the net momentum transfer.

Below we shall discuss the radiation of gravity waves in a
stratified atmosphere but here we should-note that the
influence of stable stratification may be felt on shorter
scales. In laminar flows on such short scales Mason and
Sykes found that stable stratification suppressed the mean
flow eddies giving a much reduced drag. For the turbulent
atmospheric boundary layer on very short scales Cg is
dramatically reduced by stable stratification. On larger

scales the effect of stable stratification is not known.

The difficult task of obtaining reliable forces for turbul-

ent flow on these scales of order a kilometer is now vital.

b. Large scale '"boundary 1ayer pumping'drag

This should be mainly explicit even in large scale numerical

models but, as we shall see, with a stable atmosphere, it
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can also be important on scales of order of hundreds

of kilometers. The difficulty with this drag arises
through the drag being proportional to the square of

the height of the topography so that smoothed topography
will not have the correct effect.

Below we give a "back of the envelope" derivation of the
drag which illuminates its nature. A rigorous analysis
giving the same result apart from a small numerical
correction can be found in Mason and Sykes (1978).

Consider flow at small Rossby number R = U/fL <1 (Mason
and Sykes found it to occur provided U/fL < 1) in bounded
fluid of depth D.where D < L/R (Fig. 1).

AMAMHIDIDIAN

R R Y

A
—
\ 4

For these parameters the relative vorticity z = %% - %%

can be inferred from the conservation of

L +c v, _fh
D thus ‘ax -5
and v~ Lfh

~ 27D
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The total energy in the disturbance above the topography
is thus of order
4 .2 h2

£
8 12 D

%pvz 12 p ~pL

Assuming that dissipation is confined to the boundary
layer we may integrate the momentum equations and using
continuity find a pumping velocity

9Ty 9TX
ox 9y

-1
W_pf( )
where tx and Tty are the x and y components of surface stress.
If the velocity perturbations due to the topography are
< UO then for a turbulent boundary layer

]
—x ~ -0 C U 5y cos
where C,. is drag coefficient and o the angle of the surface
G
stress to U
(o}
6 Yo v

Thus w ~ - —F I

This pumping velocity has a sense which stretches the fluid
filament on top of the topography back to a state of zero

relative vorticity. The time scale on which this occurs is

D L
~ (assumed > =)
CgU fh CGU- u
f ° D

Now

work done = total energy/time scale on which energy
is dissipated

D

/
CGUO
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As we shall see in the summary this force is significant
for atmospheric scales of = 107 m.

In a stratified fluid at small Rossby number the vertical
scale H associated with a horizontal disturbance L is

30
32

~

Lf 2 _
5e N » where N° =-

o loq

Brunt Varsala frequency

(see inertia-gravity wave dispersion relation below).

if H < D the above argument follows through with H
replacing D and we obtain

2 g2 .2
L® N h CG
2

Fss =

As we shall see below this force is significant for

6 7

atmospheric scales of 10° - 10’ m.

3. Wave drags

a. Inertia-gravity waves

Fbr scales between the short ones on which aerodynamic forces
must be considered to the large scales on which boundarv
pumping occurs, wave drag from inertia gravity waves is

of potential importance. The parameterisation of such
wave drags represents a most difficult challenge. The
wave energy generated by the topography may be a complex
function of wind and temperature structure, but worst of
all the flow retardation arising from the wave generation
is not confined to the boundary layer, but occurs where
the waves are dissipated. This dissipation may frequently
occur at "critical levels" in the atmosphere where the

vertical propagation of the waves is halted.
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Again we present an order of magnitude estimation of the
drag effects. Consider the linearised inviscid inertia

gravity wave equations (Queney 1947).

U .a_g —_ :fv - AE
0 §Xx 3X

3V - _ 3D

UO X + fu 3y
ﬂ = ap . o= .9_

UO X 37 + a, g g -5
30 _ N2 w =

UO X N™ w 0

Boundary condition w = Uo %% below and unbounded above.

Solve by Fourier transform solution of the form

. .
U=U (k,1) ™

where
2 .2
mz _ N2 k2 (1 - Uo k /NZ)
2
f (1 -2 ¥?/:?)
o
UO k/f = R the Rossby number and
UO k/N = F the Froude number thus.
2 _ k¥ a-7F)
m=-73 p)
f (1 - RY)

For R <1 and F 1

m = i Nk/f

. NL
evanescent vertical scale Nl??? as used above - no wave

drag occurs.
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This is true for atmospheric scale greater than typically
600 Km-

For R > 1 and F>1

1

m = ik

pétential flow and no wave drag.

This is true for atmospheric scales of less than typically
6 Km.

For R > 1 and F<1

m =

cl=

gravity waves

For R<1 and F>1

m ~ k S~k . R

inertial waves - not appropriate for atmosphere since

N > f and vertical scale-j; very much greater than D.

kR
Now
¥ U = 1 p V2 A C
w 2 g
work energy area group
done density radiating velocity

To obtain the group velocity take é% instead of Uj g% in

the Queney equations and for R > 1 we obtain

2 2

2 _ N% (k% +1%)
w2 + k2 1+ 15

0)
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and

The vertical velocity produced by the topography
U h 27
S

L

For the gravity waves with F € 1 from continuity

horizontal velocities are greater

i,e. U~w $~Nh

Thus the energy is ~ %p)Nsz

and
e g - 1. 22 12 U
G g P LN
F. =pn UN L h?
G p

Again we have a drag force dependent on the square of the
amplitude of the topography. This aspect of the results

is dependent on our use of linear theory.

In the case of internal gravity waves the assumptions are

h U
‘L‘<1 andﬁ—ﬁ>1.

The restriction in slope is straightforward and % is
effectively limited to ~ 1 by flow separation. Numerical
experiment by Mason and Sykes suggest that even in these
cases linear theory gives a reasonable estimate of drag.
The lattercriteria is often more important. The Froude
number i is ratio of the fluid kinetic energy to the

Nh
potential energy needed to 1lift fluid a height h. When
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%L > 1 fluid goes around rather than over the topography.

jmy

%% is generally~1 for h ~ 1 kilometre though under stable
bo

undary layer conditions it may be unity for smaller h.

In the case of the linearised theory of Ekman pumping drag

given above the critical assumptions are

%% < 1 in the homogeneous case and

U
N% > 1 again in the stratified case. Both of these

criteria measure the magnitude of velocity perturbations
relative to Uo and determine whether the flow goes over
or around the topography. This was clearly indicated by
laboratory experiments (Mason 1977) on flow in a rotating
stratified fluid.

b. Other wave drags

The radiation of Rossby waves is outside the scope of this
document but for perspective a crude estimation can be
made. On these long scales motion is nearly two dimen-

sional with waves being radiated horizontally.

For large topography we may calculate an upper bound by

assuming the velocity perturbations are ~ Uo' The group
2
velocity is C ~ L S
g 4
Thus
work done = energy x area x  group
density radiating velocity
2
_ 1 2 L™B
FR U = 5 0 UO x I D x 5
47
1 3
FR = 50 U L DB
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This force is only important on atmospheric scales of
>107 m (N.B. the 8 m2!),

We have not considered any possible radiation of other
synoptic scale disturbances such as neutral or growing
baroclinic waves. Unlike the other rough estimates given
here a formal estimate is not available and it would be

foolish to proceed very far. As an upper bound we may

take a vertical scale %%ﬁ and assume horizontal radiation
with velocity Uo'

This gives

-1 2 .2 f
Fo=5rl, L7 GG
which is generally significant but not dominant. 1In as

far as this is probably a considerable over estimate

such effects may not be very important in momentum transfer.

4, Summary

Heré we compare the magnitude of estimates of force, as

given above, with the stress due to a typical turbulent

boundary 1éyer; i.e. Cg = 2.1'0_3 and stress To = 2.10_3 U; .
We have used f = 10”% s —1, N = 102 s_l, U=10m s_l,
D = 10% and h and L as indicated in Table 1.

‘ 1 2
. . T L T .
. Aerodynamic — = %3 T35 T T

E C_ UL g

g
12 §2 n? c,
2. Homogeneous-boundary _T_§ = 81r2 D2 - L2 f2 _13_2_ 1
.layer pumping T 2 .2 2 .2 2
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L N h” C
. Stratified-boundary = 5 5 = 5
layer pumping To C_U4L 2 U
. "G _sUNLWh? _ % .h . Nn
. Gravity wave T 55 = I S il
radiation o Cg U° L g
U L3 D
'R _ _ 81° 1 .D. L%
. Rossby wave - = 55 I i
radiation o - Cg U L 81
TABLE 1
L/m 102 103 104 10° 108 107
h/m 10 100 103 103 103 103
TA/To ~1 ~1 ~1
s/ 7o ~1
Tss/To ~1
¢/"o ~1 ~1
R/ 7o ~1
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