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The large time scale separation between the natural varia-
bility of the atmosphere and the slower parts of the
climatic system (oceans, cryosphere) introduces a natural
statistical component into the structure of climate change.
This statistical element is an essential input in stochastic
climate models (Hasselmann, 1976) and plays an important
role also in the construction of climate prediction models

(Barnett and Hasselmann, 1979).

In statistical modelling it is useful to distinguish
between statistical prediction models and the application
of stochastic models to analyse the dynamical structure of
the climatic system (Hasselmann, 1979). In system

analysis applications it is generally more effective to
work in the frequency rather than the time domain. Because
of the causality side condition, however, the construction
of optimal prediction models is more easily carried out in

the #ime domain.

By fitting model auto-variance spectra to observed spectra
of sea surface temperature (SST) variations and sea-ice
fluctuations it has been shown that both SST and sea-ice
variability can be described in the time scale range from
a month to one or two years as the integral response of a
slow (first order differential) system to white noise
atmospheric forcing (Frankignoul and Hasselmann, 1977,
Reynolds, 1978). Essentially the same model, extended to
include a long time constant, deep diffusive ocean, was
also able to reproduce qualitatively the observed climatic
variability spectrum in the longer period range from a

few years up to several thousand years (Lemke, 1977).

More sophisticated models of SST and sea-ice variability,
including spatial coupling, can be constructed if the
cross spectra of the observed anomalies at different

locations are taken into account. However, as the models
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become more complex, the problem of the statistical signi-
ficance of the model becomes important. In order to
determine the degree of detail that can be inferred from

a given data set it is necessary to test a hierarchy of
models, starting from a simple model containing only a few
adjustable physical parameters, and successively intro-
ducing additional parameters until a model is found which
is consistent with the observed spectra at a given statisti-
cal significance level. The addition of further parameters
then reduces the error level but at the same time also
reduces the statistical significance of the model. The
optimal model is the simplest physical model which is
statistically consistent with the data. Application of
these techniques to SST and sea-ice variability data
yielded useful estimates of the fields of effective
advection velocities and diffusion coefficients governing
the evolution of SST and sea-ice anomalies, as well as

the spatial structure of the white noise atmospheric
forcing (Lemke, Trinkl and Hasselmann, 1980, Herterich,
1980).

The same problem of balancing the statistical significance
of a model against good simulation of the data arises also
in the construction of statistical prediction models. If
the class of models to be fitted to the data is defined
too widely at the outset, i.e. if the model contains too
many adjustable parameters, no statistically significant
model can be found. Thus the optimal model must again be
determined from a model hierarchy, in which more compli-
cated models are developed successively from simpler
models. As the number of model parameters is increased,
the skill of the model increases, but the statistical
significance generally decreases. The point where the
statistical significance falls below some prescribed level
then defines the optimal model of the hierarchy, i.e. the

maximal skill model which is still statistically signifi-
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cant. Application of these methods to multi-time lagged,
multi-variable linear predictions of anomalies in the
equatorial Pacific yielded significant predictions up to
lead times of 6 to 10 months (Barnett and Hasselmann, 1979).

Clearly, the optimal significant prediction will depend
rather critically on the a priori choice of model hierar-
chy. However, this is an unavoidable problem in all
statistical modelling applications in which the statisti-
cal significance of the model is considered, since an
unbiased statistical test always requires the a priort
specification of the hypothesis to be tested.

Linear prediction models are normally constructed assuming
statistically stationary processes. For short range
climatic predictions, this assumption is rather question=-
able, since the statistical properties of the anomaly
fields, even after subtraction of the mean annual cycle
itself, clearly exhibit a strong seasonal dependence. It

is a common view that the generalization of time-invariant
prediction models to seasonally varYing models is in many
cases not feasible, because the many additional degrees

of freedom of the model needed to represent the full

annual cycle unavoidably degrades the statistical signifi-
cance of the model. This problem can again be resolved,
however, by introducing the additional degrees of freedom
sequentially. A natural model hierarchy can be constructed,
for example, by expanding both the model and the statistics
(second moments) of the anomaly fields in a harmonic

series with respect to the fundamental annual cycle. The
importance of the additional degrees of freedom introduced
through the annual modulation of the model must then be
judged a priori in competition with the other degrees of
freedom of the model (for example, the number of time lags,
or the number of components retained in a principile

expansion of the predictor fields). Based on this assess-
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ment, a one-dimensional hierarchy of models can then be
defined and tested in essentially the same way as for the
time invariant case. The unavoidable competition between
the relative relevance of the time-invariant and seasonally
dependent parameters of the model is partially offset by
the fact that additional statistical information is avail-
able to test seasonally varying models, since not only

the zero'th harmonic but also the higher annual harmonics
of the second moment statistics are used in fitting the
model. Thus if a strong seasonal modulation of the
statistics is observed, seasonally dependent prediction
models can generally be constructed with the same statisti-
cal significance as time invariant models containing a

comparable number of predictors.
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