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1. Problems

We shall be concerned here with barotropic nondivergent large-scale
motions on the B-plane ( sphere) with orography as forcing. A ‘'simple‘
"fluid system of thi$ type is that governed by the potential vorticity

equation
fh
wg T2y * Iy, v2yp b 4 D)= ~Cv2y + F (1)

The notation is conventional: ¥. is the stream function, h the orographic
profile, f = fo + By the Coriolis parameter; H is a scale height and
C is a damping constant. F stands for some kind of additional forcing.
We have written our equations on the g-plane; however, most of the
derivations and arguments given below need little modifications to be
applicable to the sphere. .

The flow will be restricted to a channel on the S-plane where the
values of the stream function at the northern and southern boundary

are given and do not depend on x.

Let us write

(2)

Vo= mugy b ug Y

where u, does not depend on y or x. y_ is the solution of the linear

s
inviscid steady-state mountain wave problem
u_f i
2 o 0n= 3
(u, V2 + B) ¥g + o (3)

Let us consider flows where ug is constant in time (i.e. the boundary

valies of ¢ are fixed). Neglecting for the moment F we arrive at

" t,h ) £,
ap A2+ (V2 ¢ B) gt ¢ (¥, VR 4 o) T, W ) (4)

* I(hg, V2 I, VEy) = —CVE(ug + V')
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It is césy to prove (Egger, 1979) that
) Afoh :
J(lps, vey +T= 0 (5)

Then S

2oy2y 4 (u_ V2 + L ogcer, v2pr o+ EQE) + X v2y')
sp V2 o B) 3% (v, vy H Vg (6)
+ Iy, V29 ) = -CVE(y '+ ¥T)

We define the mean kinetic energy

2

F
K = ______O + 1 1 2 = 1 7
) , (Wlug+ v')) K, + K (7)
where p Means an area average over the domain of integration.
With u, fixed we arrive at
£f_ "9 T '
4K _ &K' 4 _ et - 20 2% +y, (8)
dt dt H ax

The kinetic cnergy of the flow can increase whenever northerlies
prevail over the mountains. To close the system energetically

we need an additional ecquation for ug (Schilling, 1978):

duo = .f_O_ 3 (‘PS + ‘P')hF (9)

dt H X
( damping can be inclué-d, of course)

We introduce a bar — as an average over time. The averaging inter-
val should be large when compared to L/uO (L length of the channel).
It will be helpful to discuss the flow fields in the channel
in terms of Fourier modes. We shall denote the Fourier mode with zonal
wave nurber m and meridional wave number n by (m,n) where n- 1 ig
the number of zcros between the walls of the channel.
Given all that let us pose our problems:
i)} Is there a stcady state for this fluid system ?
ii) Is there a time mean y for transient flows which does not
depend on T ? Under what conditions is y ~ ws?
iii) What kind of transient phenomena do we have to expect in
‘such a fluid system? ‘
Before we turn to a discussion of these problems we should per-
haps briefly comment on the relevance of these questions to the

large-scale dynamics of the atmosphere and to forecasting. It is
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reasonable to believe that (1). portrays essential parts of the dynamics
of atmospheric large-scale motions. In case we find a stcady-stabe or

at lcast a time mean we obtain an indication how the atmosphere or

a forecast model would settle down if all the other forces and mechanisns
which are not renresented in (1) were turmed off. In particular one would
like to compare these computed mean states with the observed time means
in order to see how close the atmosphere is to the purely orographically
forced states. ‘

As for the last point we shall concentrate on the blocking problem

which is of obvious importance to forecasting.

2. Steady states

One might be inclined to think that (1) with F = O has a steady-state
solution for the viscous case only. However, it is obvious from (6§) that

the:e exists a stecady state even for the inviscid case:yp = by o

~
1

] = 0 ( where the symbol * denotes the steady-state solution). This
result is of some interest since this solution exhibits a surprising
similarity to the actual flow field in the Northern Hemisphere ( at
lcast in winter). Fig,1 shows the observed height of the 400 mb surface
in Jan'ary. Fig.1b gives the solutionj = wéof (3) with u, = 25 cos 1 /4
( m sec -1). We have included in all solutionsof (3) a weak damping
with ¢ = 1x10"65ec_1 to avoid resonance effects so that the solutions
presented in Fig.1by,c are not exact solutions of the nonlinear steady-

' state equation. Fig.1c gives the solution of (3) where the zoneal
flow corresponds to a superrotation. Fig.1d has been obtained by solving
the linear standing wave vorticdty equation corresponding to (3) on the
s»here but with realistic January mean wind. In that case we cannot claim
that the linear solution is also a solution of the nonlinear problem.

The standing waves in Fig.1 b-d are grossly exaggerated as compared to
the observations since we did not use a reduction factor for the mean
wind in the mountain forcing term. However, all our solutions ghow
the large-scale troughs over Canada and North-East Asia as well as the

observed ridges over the Pacific and Atlantic. The January .
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Fig.la. The observed height of the 400 mb surface in January, with
isolines every 100 m and 7000 m contour dashed ( after Gates , 1972).

The thin lines represent the orography with isolines every 100 m and
the O m contour dashed. k
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Fig.1 ¢ - d. Solutions of the stcady-state linearized potential
vorticity equation with orography of the Northern Hemisphere. The
equation is solved by using grid points between equator and pole

and a Fourier representation in longitude with six zonal wave numbers.
We display the geopotential ( 100 mzsec_z) of the sum of the prescribed
zonally averaged state and the orographically forced perturbations.

The geopotential is related to the computed stream function via fy = ¢

Fig.1 b gives the B-plane solution of (3) with u, = 25 cos T /4 m sec—1



94

30 - ' 90N
75 /\’/ \ F7s
504 - - 60
45 L 45
304 - 30
15— --15
0 T™ T T T ) T l T | E— T 0
180 150 120 90 60 30 0 30 60 90 120 150 180 E
Fig.1c. Solution of (3) on the sphere with u, = 25 cos o m sec"1

90N

75
.60
45
-30
15
0

wiso 150 120 90

Fig.1 d. Observed January zonal mean flow at 400 mb.

120 .

150

180E



95

solution appears to be the most realistic one. Note the blocking
flow pattern over the Atlantic in Fig.1b and, somewhat blunred, in
Fig.1c and d. Our results are in gqualitative agreement with the linear
steady-state solutions of the shallow water equations presented by
Grose and Hoskins (1979) and, of course, with the pioneering paper by
Charney and Eliassen (1949) who got quite satisfactory coincidence
with the observations by using an almost one-dimensional version of (3).
In particular, the occurence of blocking patterns has been found by Grose
and Hoskins as well.

The coincidence between Fig.1b and the observations suggests that the
steady state solution@ = wsis approached to some extent by the atmosphere.
It would be interesting to look into the stability of this steady-state.
This is left for future work.

Before we turn to the fully viscid case it might be wotthwhile
to have a brief look at the situat:ion in oceanography. Bretherton
and Haidvogel (BH; 1976) studied the evolution of 'almost Ainviscid’
flow above topography in a closed basin in an attempt to deal with
the characteristics of meso-scale eddigs in the ocean. They used (1) but
with a fourth-order diffusion thusnréstricting the dissipation to the
largest wave-numbers. They found in experiments on the f-plane that
a very nearly steady-state could be achieved where the vorticity became
strongly anti-correlated with the topography (Fig.2) . The final state
displayed stream lines parallel to the contours of constant depth, anti-
cyclonic around mountains. BH argued that the enstrophy in two-dimensional
flow cascades towards the smallest scales at which it is disspated
whereas the kinetic energy K goes towards the largest scales and remains

almost constant. Then one has to expect a steady state of the form
foh .
Vi 5 = b (10)

where y is linked to K. Once B got included the result depended on the
energy of the initial state. With relatively large initial enerly

. a steady state was reached where again topography and vorticity were
anticorrelated whereas .the total energy fell rather rapidly for low
initial'energies.

What kind of results would have been obtained by Bl if thcy would have

run their model with our boundary conditioﬁ%Normally their argw:ents
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Fig.2. Topography (left) and steady-state stream function in the

f-plane experiment of BH. Dimensionless units. Redrawn from Fig.2

of BH.

<

e

Fig.3. Stream function of the two steady states found by

Charney and de Vore. The thin lines give the position of the

topography.

.3 of Charney and

Dimensionless units. Redrawn from Fig

de Vore.
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vould not be valid in our case since K has a source ( see (8)). However,
this source term would vanish for u, = O. Then , the arguments of BH
would lead to an qu?ﬁion for the steady state

V) + —2— + BY = uy (1)
where u is linked to K. It is easy to see that we would have to expect
‘a zonal mean flow which changes direction in the channel. It is,however,
not so easy to see what the correlation between orography and vorticity
would be. We shall not present such an analysis . This is partly because
we do not,have a high-resolution model for turbulent flows like BH so
tat we cannot test such hypotheses. Secondlv, neither the absence of
friction at the largest scales nor the vanishing of u, are realistic
assumptions for atmospheric large-scale flow.

The numerical experiments to be described in this paper have been carrie
out with a rather severly truncated spectral model where typically
m< 5, n< 3. Charney and de Vore (1979) loocked into the steady-state
problem for such simplified flow systems. They integrated the shallow
water equations in a channel with a one-mode topography and linked their
results to an analysis of a four-mode splution of (1). They prescribed
a simple driving mechanism for the zonal flow and had a damping as in (1)
They found that the flow system possessed two stable steady states
under favorable conditions (Fig.3). The one is characterized by anti-
cyclonic flow above the valleys, the other by anticyclonic flow @bove
the topography similar to the BH solution. The one exhibits a relatively
weak standing wave at the same mode as the orography whereas the other
one shows strong waves at the second meridional mode of the channel.
Similar results have been obtained in an analytic study by Buzzi and
Trevisan (1979). Such results suggest that the existence of different
gypes of persistent GroSwetterlagen may be assocdated with the
multiplicity of orographically forced steady states.

In an attempt to see what happens when the orography is more realistic
than in the case of Charney and de Vore, I have integrated (1) in a
channel with walls at 15°N and 75°N and with the orography of the
Northern Hemisphere. A value of u, = 14 m sec_1 has been chosen which

mode the mode (2,2)'resonant'. With C = 1x10_6 sec-1 and an arbitrary
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Fig.4. Stream function of the steady state (‘IO7 mzsec-1). c =1x10_6
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Fig.5. Meridional profile of the zonally averaged wind of

the steady-state solutions &f (1) with g

= 0.3, 1.0, 1.5 resp..
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initial field we arrive at a very nearly steady state after, say, 30
days. (Fig.4). Comparing this steady state with Fig.1b we find that
the fields are much smoother now. The only obvious coincidence occurs
off Asia where we find a well developed trough in both solutions

The large deviations between Fig.1b and Fig.4 suggest that nonlinear
terms play a dominant role in maintaining the viscid steady state.

To get a feeling for the intensity of the nonlinear interactions
we have repeated the run but changed the height of the orography
by a factor a . The less o the closer we should come to the linear
solution g (corrected to include friction). Tab.1 gives the
Fouriercoefficients of the modes (1,1), (2,1), (3,1) and (2,2)for
experiments with ¢ = 0.3, 0.7, 1.5 resp. as well as the solution
of the linear problem.

We see that the steady state for o = 0.3 is fairly close to the linear
solution except for the mode (2,2) and for the cosine of (1,1). The
latter failure is probably due to the weak forcing whereas the deviations
at (2,2) are explained by the fact that the Rossby phase velocity
c25=0. We cannot expect to get standiﬁg waves in agreement with the
linear the o>y for such a slow mode. Once we increase o to 1.5 the co-
incidence with the linear theory becomes rather poor. Hence, the
steady~state solution for such a strong forcing shows a dec -dedly
nonlinear cﬁargcter. This is also demonstratéd in Fig.5 where the pro-
files of the zonal wind are displayed. Fore = 0.3, u“‘uO whereas strong

.+ shears are seen for o.= 1.5. ’

A search for another steady state has been undertaken by starting
numerical experiments from ¥ = - uy +-Ws , % =1 . However, these
runs converged towards the stcady state displayed in Fig.4.

It could have been anticipated that a system like ours with forcing
and dissipation has a steady state for. .certain areas in the paraneter
space. However, it is surprising that the inviscid steady state is
so close to the obscrved mean flow. This is the more surprising since
this steady state differs considerably from that obtained with
c = 1x 1O~6 sec_1. Note that the latter steady state is rather different
from that predicted by BH. There is no coincidence between oro-

g. phy and_zg%ticity but we have a systematic phaseshift between? and

h to make h%% <D and to have a balance of the dissipation.
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Mode 1, 1) (2, 1 (3 , 1N (2 ,2)
1. & = 1, Linear 0.7/ 3.0 7.2/-3.3 1.7/-3.6 =7.6/-11.2
solution with friction '
2, o, .= 0.3 ‘ -0.1/1.1 2.3/-0.6 0.7/-1.0 2.3/3.4
3. o = 0.7 steady- -3.5/3.5 3.7/1.9 1.8/0.9 0.6/9.8

states
4. o= 1.5 -9.7/ 2.2 4.1/1.7 -0.240.8 4.6/6.0
5. Rossby phase - 43 =22 -9 0]
2

speed Crn™ uo—ﬁ/kmn

6_2

. .. . ] . . -1
Tab1. Fourier coefficients ( cos/ sin) oﬁ various modes in 10 m"sec .

1. Lircar solution with u, = 14 m sec—J. 2-4, Computed steady states

with various values of a . 5. Rossby phase speed of the modes in m'sec—‘I

Mode (1,1 (1,2)  (1,3) (2,1 (2,2) (2,3) (3,1) (3,2) (3,3)

T/ Ty ~0S5/8 ~S2{2% Aftq ~0R(S5% 00/2 1/4  -asfi¢ 333 04/0.9

‘Tab.2. Ty, and Ty for various modes (days).
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The existence of multiple steady states is another exciting result.
It is, on the other hand, rather obvious that these results are
quite isolated and that we do not have & comprehensive theory of

the steady states of orographically forced flows,

3. Transient flows.

Given an initial state different from Vg and a sufficiently small

value of the solution of (1) will not tend towards a steady state.

1f [y '|<|vg| one would expect y»~¢ and § ~y since in that case
s

J(¥',v2yr) - should be of minor importance when compared with the
'linear'term (UOV2 + B8) gﬁ

A good example for such weakly nonlinear flows has been provided
by Kasahara (1967). He solwved the inviscid shallow water equations
on the sbhere starting from a zonally averaged initial state which
corresponded to the observed 500 mb state in January. He ran his
model for 20 days. Fig.6 shows a mean over the last 15 days ( small
T). Comparing Fic.6 to Fig.1d we_nofé a fairly good coincidence bet-
ween the linear steady state solﬁtion and Kasahara's finding. We
have prqmonen£ troughs in the lee of the Rockies and of the Himalaya
in both figures. In general, the oceans are high pressure areas.
Qualitatiielywspeakingm'~ wén Kasahara's experiment.

However, we have to be ccutious against drawing this conclusion.
First, Kasahara did not rvn his model long enough to make sure that

a meaningful time mean has been established. Second our guess that

—— g

(Ugv2+ g) %% J(y',v2y ) will hold only for those modes with a
sufficiently large phase speed.

Given a mode (m,n) we may define a linear time

T o= (K C -1 ' (12)

Lmn mn)

where km is the wave number . Similarly a nonlinear time

n
- 2 -1 (13)
TNmn - ($ K mn)
may be defined which is characteristic of the nonlinear intéractions
(e.g. Egger, 1978). $ stands for the amplitude of the x-dependent

Fourier modes in the channel. We can expect to find @;ﬁ~wmﬁgr those
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modes where TN/TLf>? 1. Tab.2 gives TL and TN for various modes in a
channel corresponding to that shown in Fig.4. Obviously there are

a number of @Sdes where T A T; . Longterm experiments with such a flow
will lead to ¥ ~ Vg at best for those modes with Ty / T; 5% 1. The other
modes will be dominated by nonlinear interactions.

It is , however, difficult to thoroughly test these ideas. As long as
we treat u, as a constant there is no energy conservation for inviscid
flow. We are well informed about the relevant linear and nonlinear

times but we cannot expect to find meaningful time averages. As a matter
of fact K grew in all such experiments ( despite an energy conserving
numerical scheme).

One way to get around this difficulty is to put u, = 0. The experiment 1
has been made and it turned out that ¥ ~0 ~ ¢S . A similar

result has been obtained by Metz (1979) who integrated (1) on the

sphere with vanishibg superrotation. Of coursey = O is a solution

of the time averaged equation (1) with u, = O:

ay! - foh g
B om— + J(¥ }V P +'fﬁ‘) = —CV-y

(13)

whenever the transient eddies do not transport transient vorticity:
J(U', V29 ~ o, . Another method to solve this problem would be

to add (9) which ensures a conservation of the total energy of the

flow. Once we do that u drons rather rapidlr (Fig.7). At first this

is not a surprising result since the waves contained no energy at t = O.
Therefore, u, = has to drop in order to provide energy for the oro-
graphically induced waves. However, u, came even close to zero in
'equilibrium' when the resolution of the model was increased. Further-
more, ug reached the"same'equilibrium'value as in Fir.7 when its
initial value was 30 m sec.-1

We speculate on the basis of this rather limited number of experiments
that barotropic flows with orography are in equilibrium only for u, v o,
provided the orography is strong enough and the resolution is sufficient.
With Uy~ 0, TL<Z TN and we would expevt to have Rossby waves in

the channel which hardly interact.
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Fig.6. Mean deviation of the height of the free surface in decameters

as found by Kasahara (1966) . We show here only the part of Kasaharas
result which is situated in +he Northern Hemisphere.
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Fig.7. u, as a function of time in an inviscid run on the B8-plane.
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Finally, one can try to find a value of C suitable to balance
the orographically enforced increase of energy. For example, with
C = O.5x10—6 sec”1 K'grew from 150 mz sec-2 to 210 during 50 days.
It is reasonable to talk about time means in such a experiment.
Fig.8 shows the Fourier coefficients of the mode (2,2) in time.
¢22 = 0 initially. We observe a linear growth during the first days
which can be shown to be due to the mountain forcing of this mode.
This development comes to a halt rather soon since friction is coming
into effect. However, wéznever reaches the equilibrium between damping
and moun@gin forcing since the interaction with other moes

proéuces slow changes off the linear eguilibrium. We get 5 (8) x‘lO6

m2 sec_1 for the time mean of the cosine (sine) coefficient of . .

6

The linear theory yieldshﬁzzr—1.5 (2)x10°. It is worth noting that not

even the mode (1,1) comes close to the value predicted by the linear

theory when averaged over the 50 days.

Fig.8. Development of the Fouriercoefficients ( 1= cosine, 2 = sinei4g;ﬁdﬁ
of the mode (2,2) in an experiment with‘uo = 14 m sec—1, m<¢ 5,

n<3, ¢ = 0.5x10°% sec”1; B-plane.

’
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Fig.9. Steam function (1O7mgsec“1) at day 7 (a) , 10 (b) and 25 (c)
of a channel flow experiment with C = 0.3}(10—6 sec-1ﬂn§ 5, n< 3,

u_ = 14 m sec—1. Orography of the Northern Hemisphere but changed to
have h = 0 at the walls. The orographic mode (1,1) is missing for reasons

which have nothing to do with the objectives pursued here.
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In conclusion one might try to answer ii) by saying that $'~ wé‘
as long as TL~<RTN for most of the dominant modes of the flow.

It is not clear what happens when it is otherwise. On the other hand,
it became obvious during the foregoing that it is difficult to
produce solutions of (1) with uo# 0O which have a reasonable time
mean state ( at least as long as F = 0).

Finally, let us look at transient features of the flow fields. It
has been shown (Eggexr, 1979) that orography at two modes can induce
blocking. Let us turn here towards a more realistic orography. Fig.9
shows flow patterns obtained with the orography of the Northern Hemishh
as forcing. Starting with vanishing wave amplitudes we obtain a rather
fine blocking pattern near 120° E at day 7 which drifts slowly towards
the east. The block has a life time of about 10-12 days and can't be
seen any more at day 25. On the other hand, there is quite a similarity
of all the fields shown in Fig.9._@ith,other words, our flow does'nt
show nwuch transienqg and is rather close to a steady state. Then, it
is not really surprising that we can crecate blocks in such a run since
we have seen that blocking patterns can be found even in linear
steady state séiution. We have repeated the run but excluded the wave-
wave interactions. It turned out that the pattern at day 7 and day 1o
were rather similar to those displayed in Fig.9. Hence we can state
that blocking flow patterns can be created by orography in almost
linear flow systems.

On the sphere the results are almost the same. As already mentioned,
Metz (1979) has integrated (1) on the sphere for about 100 days startin
from a purely zonal flow field with u = 17 cos ¢ » C = 0. Several
blocking patterns formed with a clear preference for the Pacific
and the Atlantic areas. Fig.10 shows an example of such a block. We
have the familiar high-low system above the Atlantic with a well
developed split of the jet to the west. Again, a run with wave-wave
interactions excluded gave similar blocks.

We feel, however, that it would be premature to conclude from these
experiments that blocking is an essentially linear phenomenon caused
by orographic forcing. We have to bear in mind that the models used
here truncate the wave spectrum rather severely and exclude baroclinici
Furthermore additional experiments with the models are required to

more clearly elucidate the blocking process in the models.
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Fig.10. Geopotential at day 51 of an integration of (1) on the sphere
= 0. After Metz (1979}.

with orography of the HNorthern lemizphere. C
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