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ABSTRACT

The normal modes of a linearized version of the LECMWF grid
point global forecast model are determined and described.
These modes are used for tests of the linear and non-
linear normal mode initialization pfocedures when mountains
are included in the model. The linear procedure is shown
to have some problems which are alleviated by the non-
linear correction procedure. The nonlinear iterative
procedure converges to a good initial state when up to the
first five vertical modes are initialized in the 9-level
adiabatic frictionless model. VWhen all nine vertical modes
are included, the procedure diverges. The choice of the
mean state which determines the normal modes is not

crucial to the procedure. .The nonlinear modal
initialization is shown to be superior to dynamic
initialization in terms of both computer time and
elimination of unnatural oscillations in the forecast.

The effect of including friction and physical parameterization
in the model during the nonlinear iterations is discussed.
The inclusion of the procedure in an analysis-initialization-
forecast cyvcle is also described. In such a cycle

the global rms changes made to the analysis by the

initialization are no larger than observational errors.



1. Introduction

Since the introduction of primitive-equation models for:
numerical weather prediCtion, a completely satisfactory
solution to the problem of defininé an initial model state
has proved elusive. Unless the initial mass and wind
fields are carefully balanced, the forecast will be
contaminated by inertia-gravity oscillations with
amplitudes much greater than are observed in the atmosphere.
The required balance is quite subtle, and the problem of
satisfying it has been the subject of much research.
Bengtsson (1975) has reviewed the initialization
problemn, and some of the methods which have been used in

attempting to obtain balanced initial conditions.

It is sometimes argued that the spurious oscillations are
relatively harmless, especially for forecasts of 12 - 24
hours or longer; that they can simply be removed by
dissipation and/or damping time-integration schemes.
Certainly in an adiabatic barotropic model they do not
appear to interact with the meteorologically significant
solution ( Williamson, 1976). On the other hand the
oscillations can be global in scale, with periods of
several hours ( e.g. Bourke, 1974), in which case the
dissipation mechanisms will act rather slowly. In a
multi-level model including good approximations to such
highly nonlinear processes as precipitation and latent
heat release, it is not clear that the forecast will be
insensitive to unrealistic oscillations during the first
few hours - particularly’perhaps in the tropics, where
there is a strong interaction between non-adiabatic

processes and dynamics.



Furthermore, in the context of a data assimilation

scheme based on an analysis/forecast cycle, in which a
short forecast provides the first—guess fields for the
next analysis, it is clearly important that these fore-
cast fields should not be contaminated by spurious
oscillat%ons. With a cycle timé as short as six hours,

ad hoc damping mechanisms may not have sufficient time to
be effective. - If the oscillations can be removed

before the start of the forecast, this should result in an
improvement to the first-guess fields for the next analysis,
and hence to the analysis itself, particularly in data-

sparse regions.

Diagnostic initialization methods based on variants of. the
balance equation ( e.g. Houghton and Washington,1969)

have a number of disadvantages. 1In order to apply the
balance equation to global models it is necessary to assume
that the mass field determines the wind field in middle
and high latitudes, and vice versa in the tropics; much

of the analysed information is thereby discarded unless

a variational approach (Stephens, 1970) is adopted.

In mid-latitudes the analysed height fields sometimes
‘have to be artificially modified in order to make the non-
linear balance equation elliptic. The form of the balance
equation riust he carefully chosen to be consistent with:
the model's finite-difference scheme (Benwell and
Brethefton,1968). Finally the balance equation only pro-
vides the fotational component of the wind field;
PhillipS'(IQGO) showed that a consistent divergent
coriponent must also be included in order to suppress
inertia-gravity oscillations. A global divergent
component consistent with quési—geostrophic theory can be
obtained from the diagnostic w—equationv(Houghton et al., .
1971); hut despite the use of elaborate diagnostic
“initialization schemes, nrimitive-equation models

continued to exhibit unrealistic oscillations.



An alternatlve anproach dynamic 1n1t1allzat10n was
suggested by Miyakoda and Moyer (1968) and Nitta and
Hovermale (1969). In thls approach the model's own
prediction'equations are used to integrate in a forward/
backward cycle, using a time-integration scheme chosen

to damp selectively‘the high-frequency oscillations.
Mutual adjustment can take nlace'between mass‘and wind
fields. Temperton (1976) tested such a method on a
hemispherlc five-level model, and showed that it was quite
successful in removing at least the external mode
inertia-gravity os01llatlons with the highest frequen01es
However, as the damping is purely frequenoy dependent
dynamic initialization 1is unable to distinguish between
1arge soale inertia-gravity modes and small- scale Rossby
modes As in the case of diagnostic 1n1t1allzatlon it is
also dlfflcult to 1ncorporate the effects of ohys1cal
.parameterlzatlons some of Wthh - partlcularly friction
in the boundary layer - should 1nf1uence the 1n1t1a1“
balance. Moreover, dynamlc 1n1t1allzatlon is computatlon—
ally expensive.

Recently normal mode initia llzatlon schemes have been‘
developed based on the fact that the elgenfunotlons of
the 11near17ed prlmltlve equations can be olass1I1ed

1nto 1nert1a grav1ty and Rossby wave solutions. ;
Flatterv (1970) based his Hough function analvs1s soheme
;on,the normal modes of the linearized shallow ~water
equations (in continuous form) for a partioular

equ1valent depth Dickinson and Wllllamson (1919)

showed how the normal modes of a 11nearlzed finite-
dlerrenee iore(*as+ model could be obtalned and |
suggested an 1n1L1allzatlon prooedure 1n whlch the 1n1t1al
data are prOJected onto the normal modes the coeiflclents
of unwanted modes are set to zero and balanced 1n1t1al
.flelds are, reconstltuted from the remaining modes In a

purely llnear Iorecastlmodel, the amnlltudes oi the
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unwanted modes would then remain zero. This procedure

is somewhat analogous to solving the linear balance
equation, except that a divergent component is also
produced (due to the B-effect), and the mass and wind
fields are mutually adjusted in a scale-dependent fashion

consistent with geostrophic adjustment theory.

Williaméon (1976) tested such an initialization.scheme on
a global barotropic model. He showed that although the
amplitudes of the spurious oscillations were reduced, they
were still to a significant extent regenerated by non-
linear interactions. A further ihtefesting result from
this study was that a very similar 24-hour forecast was
obtained if the initialization procedure was applied

to the final forecast fields rather than to the initial
fields, indicating that for this simple model the modes
removed from the initial data (in the initialized case)
did not interact significantly with the remaining modes

during the 24-hour forecast if they were retained.

Machenhauer (1977), investigating the dynamics of
gravity-mode oscillations in a barotropic spectrél model,
noticed that the contributions from nonlinear terms to

the time tendencies of individual gravity mode coefficients
oscillated“about very slowly varying values. DBased on
this observation, he suggested thatvthe oscillations could
be removed from a forecast by setting to zero the initial
time tendenciles of the gravity mode coefficients, rather
than the coefficients themselves. Machenhauer proposed

an iterative scheme for accomplishing this, and
demonstrdated that it was highly successful in eliminating
the‘spurious oscillations. Approaching the problem from

a different viewpoint, Baer (1977) and Baer and Tribbia
(1977) suggested a closely related procedure in which the
initial time tehdeqcies of the gravity modes are set to be

the same order as those of the Rossby modes.



In Machenhauer's initialization scheme, the Rossby mode
coefficients determined from the original data are left
unaltered, while the gravity mode coefficients are adjusted
in such a way that the linear contribution to the initial
time derivative of each coefficient (which depends only on
the coefficient itself) exactly balances the contribution
from the nonlinear interactions between all the modes
(Rossby and gravity). The adjustment is thus "forced"

by the model's nonlinear terms.

Any initialization scheme may force larger changes to the
analysed fields than would be compatible with the

expected analysis error. Daley (1978) suggested a =
variational extension of Machenhauer's procedure, in which
the initial time tendencies of the gravity mode coeificients
are set to zero, while the changes to the original analysis
are minimized. Daley successfully tested this variational
procedure in a barotropic spectral model, under the

highly idealized assumption that the expected analysis

error for each variable was simply a’' function of latitude.

'Andersen (1977) and Daley (1979) have extended Machenhauer's
initialization scheme to multi-level mbdels, with’very_
encouraging results. In both cases the model used a. ‘
spectral representation in the horizqntal,;and g-coordinates
in the vertical (though the vertical diécretization:was

by finite differences in Andersen's model, and Ey.finite

elements in Daley's).

In this report we apply first,linear and then nonlinear
normal mode initialization to a nulti-level model with a
finite-difference representation in the horizontal. We show
that the nonlinear pchedure,suggested,by Machenﬂauer,,,
(1977) is highly successful in eliminating unwantéd ‘
gfavity—mode oscillations from forecasts made with such

a model; moreover, it is economical in terms of computer



time. We also demonstrate its effectiveness within the

context of a data assimilation scheme.

In the following section we present the analysis which is
fundamental to the nonlinear normal mode initialization of
the LECMWF gridpoint model. In Section 3 we briefly
describe the normal modes of this model. Sections 4 and

o present the results of linear and nonlinear
initialization respectively, with the adiabatic version of
the model. The effect of including surface drag is
discussed in Section 6 and of including the complete
bhysical parameterization in Section 7. The results of
including the initialization procedure in a forecast-
analysis cycle are presented in Section 8. Further

applications are discussed briefly in Section 9.

2. Modal analysis

a. Vertical

In this section we present the analysis which is funda-
mental to the nonlinear normal mode initialization of the
ECMVI' grid point model. This analysis closely follows
that of Machenhauer (1377) and Andersen (1977) for
spectral models but uses the grid point notation intro-
duced earlier by Dickinson and Williamson (1972),

Williamson and Dickinson (1976) and Temperton (1977).

The normal modes of the linearized model are found by
separation of variables. We first define a variable whose
derivative gives the horizontal pressure gradient in the
horizontal equations of motion, then relate the time
change of this variable to the horizontal divérgence.

This relationship allows separation of the vertical

variation and results in the shallow-water equations for



the horizontal variatipn of eachlvertical mode, vThese
shallow—Water equations have a different‘mean depth for
each vertical mode. The global shallow-water equations aré
transformed by Fourier analysis to a prcblem invelving

only time and latitude which can be put into standafd
eigenvalue form. The eigenvalues are related to the
frequencies of the normal modes and the eigenvectors

to the latitudinal structure of the modes.

For the modal analysis, we explicitly include the terms

of the equations 1inéarized about a hydrostatic mean

state at rest which is a function of ¢, combining all the
nonlinear terms in each equation into one term so that the

horizontal equations of motion are written

au 1 RTn alnps

n ) 9 O _
dt fvn * acose X T Fcoss In Qun (2.1)
oV RT 3anp
n 13 —¢ n s
e L o _
R v P = Qv (2.2)

n a ab n

where we have discretized only the vertical variation.

We will discuss the implicatiOﬁs of the mean state when
mountains are present in Section 4. Details of the non-
linear terms can be determined from the complete equations
in Burridge and Haseler (1977). The subscript is the
vertical grid index (the grid is shown in Fig. 2.1) and a
vertical average is denoted by

— 1 ‘ - o ‘
b= g (opey * 0y 2 ) (2.3)

n-y
The normal meteorological notation is used where u and v
are the zonal and meridional wind velocities, ¢ 1is
geopotential, ps surface pressure, 8 latitude,

A longitude, t time, and f the Coriolis parameter.
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The mean state Tn is given as a function of ¢ , and Qun and
Qvn represent all the nonlinear terms not included in the
left sides of (2.1) and (2.2).

The thermodynamic éqUation for the temperature T is

—_— g
3T kT _, 32%np ° & AT
n n (o S 6) o'n _
n

- e = QT
ot °n 8t (Ado)n n

(2.4)

where, for enefgy consistency, Burridge and Haseler (1977)
take

A no
1 g™
o = (2.5)
Un AOG
The vertical difference is denoted
AA =A , - A (2.6)

sk
Again the nonlinear terms are combined into one term Q Tn'
The vertically integrated (summed) continuity equation is

' BJanS n
[¢] + & = - z
£

n+y T3t T Opey (2.7)

which, when summed to the bottom of the atmosphere at

n=N, becomes the surface pressure tendency equation,

3inp_ N

5t T g (859 + Qp . (28



In (2.7) and (2.8) the horizontal‘divergenCe is given by

§ = _ 1 (gg + avcose) (2.9)
n acosg 3 236, ‘n .

An equation relating vertical velocity and horizdntai

divergence is obtained from (2.7) and (2.8)

GQ(AOG)2

zeMs

. I§ P S
o , =0 1 §, (A o), -
) % g A 7 =1

_ a v 2.10
“n+y Wg * Whey. - ( )

Equations (2.7) and (2.10) can be combined with (2.4) to

give a relation between T and § which, in vector form, is

written as- @ .7

*:w&rérf=ﬁQf*r~,~uw‘ .M_f5kv€"x ' ‘;;;“; :¥ ﬁ(éiiii_

o8 andeT.denote
_ (2.12)

and the matrixV§7= (9;1) is given by

~
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kT T T ) ‘
o 1 n n+l "n +
. = 3 T (A o) for g=n
//gﬁ [ o, (Acc)nN n Y 2
T HE K .
[111] (8_0), for 2> n (2.13)

In actual applications of (2.13) nonexisting values TO and

TN+1

as the boundary conditions 6= 0 at ¢ = 0,1 implicitly
included in the derivation of (2.7) and (2.8) result in

zero coefficients for T. or T

are needed, however, any finite value can be inserted

The nohlinear term of

0 N+1°
(2.11) is
o
Q _ K'Tn ’Q’.‘O’ ; AGTn( Gn+§st—Q0n+£) + Q*
T g o} A a *T (2.14)

n n n g n n

The remaining equation needed for the vertical separation
of variables is the vertically integrated (summed) hydro-

static equation

. | |
¢ =6+ RT, (A,%n0), (2.15)
L
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The linearized equations can now be written in terms of

vectors defined as in (2.12)

oy 1 9 ,om —0 |
5t - Yt 35558 o (RTgnpS + ¢ ) = gu (2.16)
oV 1 3 = —0
3T + fILI + 2 30 (RTlnpS + ? ) = @V (2.17)
aT e
~ v—
DA (2.18)
3 &np
s T . )
— + 8= st - (2.19)
— O
¢ = ¢gq * GT | (2.20)
where the vector n2 = (Aoc)l and the superscript T denotes

the transpose of a vector. The matrix G = (an) is given
by

an = 0 for L < n
= 1 ’ == » |
Gng ZR(Aolnc)z for 2 Ap | | (2.21)
ng - R(Aoﬂng)l for 2 >‘ n

and the vector @s has ¢é for each entry.
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To determine the vertical modes we define alvector h whose

horizontal derivative represents the horizontal pressure

gradient force,

—Q —_
gh = ¢ + RTanpg (2.22)

where g is gravity. Then, Equations (2.16)-(2.20) can be

written
2 g o B |
3t~ IV acoso oa @u (2.23)
Y g oh .
3-1? + f'l_.ul + —a— 3_9 = QV | . (2-24)
oh
where
c = ¢ 7+rt 1’ | (2.26)
and '
gQ, = G Qp + RT Qpg (2.27)

Equations (2.23) and (2.24) represent equations at each
vertical level with no coupling between levels, however
(2.25) represents a coupled set of equations s1nce in
general, C has non- zZero off—dlagonal elements. In order
to separate variables and determine the vertical structure
of the normal modes, we employ the eigenvalues of C,
denoted gDm, and the corresponding eigenvectors, ¢_. Let

~m
¢ be the matrix whose columns are the eigenvectors of C,

8 = (8 8g-.-8y) (2.28)
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and gD be the diagonal matrix of corresponding eigenvalues

Dy
gD = g Dy O : | (2.29)
0 Dy,

so that

Co = 48D | - (2.30)
or

-1

¢ = C¢p = gD : (2.31)

Then the vertical transformation

-1 — ]
u = (E u ? gu = ? ~U
- -1 ~ -1
Vo= ¢V o, QT ¢ Q) (2.32)
o -1 = -1
h = ¢ "h , Q, = ¢ Qy
gives
au P sh _
Bt Ty acose A 9u N (2'33)
-  sh . ;
9V oL 8 -~ = " :
- * fu + a 290 Qv . (2.34)
3t
oh - -
DY . (2.35)

Since Q'is diagonal, (2.33)-(2.35) represent an uncoupled
system of equations for the coefficients of the vertical

modes
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3 ' _ 9 -
—EE - f + B z = Qu
3t m acossg 3 m
v 2y, - :
_m g _m _ -
5Tt Ty R oo T Qv m=1,.,M (2.36)
aﬁm K -
ot * Dm m - th

The eigenvectors ¢, are referred to as the vertical

modes and transformed variables ﬁm, Gm’ hm’ etc., as the
coefficients of the mth vertical mode since, from (2.32)

u = gd _' (2.37)
In terms of scalars this is just a summation over the
vertical modes evaluated at the nth‘level, as in (6.4) of

Williamson and Dickinson (1976)

_ ﬁmém(n) (2.38)

We will see in Sections 4 and 5 that to apply the initial-
ization procedures the vertical mode coefficients from (2.32)
are needed. Since, in general, the matrix g}is not symmetric,
the eigenvectors @m defining the matrix_@ are not in general
orthogonal and the inverse needed in (2.32) must be found

by standard matrix inversion procedures. This is not a
serious problem as the order of the matrix involved is

rather small. It does, however, eliminate the possibility

of comparing the energies in various vertical modes by
comparing their coefficients. The matrix C is symmetfic

for equally-spaced og-levels and an isothermal base atmosphere.
In this case the eigenvecfors are orthogonal éhd the ihverSe

of ¢ is Jjust the transpose of ¢.
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We see from (2.33)-(2.35) that the coefficients of the mth

vertical mode satisfy the shallow water equations with mean
depth given by Dm' We discuss the structure of the vertical

modes in Section 3.

b. Horizontal

The details of the determination of the horizontal modes

of the ECMWF model have been given by Temperton (1977). We
review thé genefal approach here to illustrate how they
relate to Machenhauer's (1977) nonlinear correction proc-

edure.

The shallow water equations (2.36) for the vertical coeffic-
ients must first be approximated with the particular
difference approximations of the forecast model. These
approximations are given for the ECMWF model in Section 3

of Temperton (1977). The longitudinal dependence is then
separated by Fourier transformation of the variables and

0of the nonlinear terms.

Leﬂ i denote the horizontal grid point values of the

vertical mode coefficients.

fu(Ai,ej,m)

y(Ay,0,,m) = V(rg,6.m) (2.39)

J

h( Ay 85 ,m)/ ‘

The expansion into Fourier modes is written

| i
m) =

I yCkse mye ' (2.40)
k=0

Y(Ai,e

where I is the number of points around a latitude circle. The
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inverse is

]
ol L

f(xi,ej,m)e'lkxi ' - (2.41)

, I
y(k,0.,m) N
- i=1
The ECMWF finite-difference approximations to the shalliow
water equations (2.36) for the Fourier amplitudes are then

of the form

-1 r(k) - ~ + ~
84U cose 2 {fj cosej_%vj_%+fjcosej+%vj+%}
ik' - . |
a,cose‘j i - Qu(ej) , (2‘42)
~ r(k) + ~ -
StViep t Tm o g UyantEuy)

£ _ (% ~B =0
+ 520 (h3+1'hj)' QV(6J+1) (2.43)
- D,
dthj acosé 31k uj

1 ~ - -] -
+-E§ [§j+%cosej+ —VJ—%COSGJ‘iJz = Qh(ej) (2.44)

where
+ 1 -1.2 1
fj = (coser) (§fj+% Sfj—%) (2.45)
- 1 o-1.1, .2
fJ = (COS—Z“AG) (—B_fJ"‘%—’- §fJ—%) (2.46)

The discrete variables are defined on a staggered grid with
u between h points in the A direction and v between h points
in the & direction, &§_ represents the time differencing

t
operator, left general for now, r(k) is the response function
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of the average operator in the ) direction
| 1 , - |
rk) = oos(gkAA) v - (2.47)

and ik' is the response function of the difference operator

in the A direction

1 ' k
K' = (singkan)/(53) (2.48)
The Fourier coeff1c1ents of the nonllnear terms are rep- :

v and Qh In (2. 42) (2.44) we have dropped

the Fourier mode index k and, except for Dm’ the vertical .

resented by Q Q
mode index m.

Since the longitudinal average and difference of a Fourier
mode result in the same mode but'with modified amplitude
and phase and since the coefficients in (2.42)-(2.44) are
independent of -longitude, the Fourier transform diagonal-
izes the longitudinal dependence (as the vertical modes did
the vertical dependence) resultlng in a separate problem |

for each Fourler mode (and each vertical mode) .

Because of the coupling between adjacent latitudes by the
difference and average operators, (2:42)-(2. 44) represent a
set of simultaneous‘equations for ij'— (u;l j h ) as j-
varies from the north to south pole. Examlnatlon of the .-
form of the equations shows that the solution can be written
in terms of vectors with certain eymmetry properties about
the eguator. Thus we can solve two‘smaller sets of simul-
taneous equations with j varyving from the pole to the '
equator; one for the symmetric vectors in which u and h
are symmetric about the equator and v is antisymmetric

and the other for the antisymmetric vectors in which u and
h are antisymmetric about the equator and v symmetric. In

order to diagonaliie these problems we first scale the



-18-

variables by

' =
where
1 0 0
=0 - 1 0
~m _%
0 0 (gD

Similarly for the nonlinear terms.
resents a /2 phase shift of v with
we let if be the vector of length L
from equator to pole, i' = (iiT iéT
have the general form

- 1Qs7' + Li' = - iQH
Details of the analysis to arrive at
Temperton (1977) for the ECMWF model
-~ Dickinson (1976) for the NCAR model.
resents the latitudinal variation of
represents the latitudinal variation
nonlinear terms transformed the same

give i'.

respect to u and h.

(2.49)

(2.50)

" The imaginary i rep-

If

of the unknown variables

~ T
Y55

the equations

(2.51)

this equation are 'in
and Williamson and

The vector i' rep-
u, v, and h while ﬁ‘
of the corresponding
and h are to

way u, Vv,

In (2.51) the time difference operator‘ét has not

yet been specified resulting in a slightly different form

of the equation than in Temperton (1977) or Williamson and

Dickinson (1976).

definite with entries related to the cosej,

The matrix Q is diagonal and positive

and L is a

matrix depending on the actual finite differences used in

the model. 1In our case L is symmetric.
Let '
- 3506 - o 1= ot o-t
Y= @y H=¢¥H,L=0"LQ (2.52)
so that
- dis.y + Ly = ifl (2.53)



~19-

We now proceed as we did in determining the vertical modes.
Let ? be the matrix whose columns are the eigenvectors

iz of ﬂ and let & be the diagonal matrix of corresponding
eigenvalues vk

YLy = | (2.54)

Equation (2.53) can be transformed to

s, Y71y = -ipyty e ¥ hE (2.55)

~

Since A is diagonal, this problem separates intofL independ—

A

ent equations: for the components of the vector Y—lx‘which

we denote by c(k,f,m), i.e.

c(k,1,m)
-1y _ :
Y ©! = c¢(k,m) = c(k,2,m) (2.56)
c(k,L;m)
Note that since L is symmetric, Y_1 = YT'so that if we

, i
define Y = Q *Y,

! ‘ (2.57)

=< >

c(k,m) = Y'Q
which is just the vector form of Equation (6.13) of
Williamson and Dickinson (1976).

Since é is symmetric, its eigenvectors are orthogonal and
the inverse of the matrix of eigenvectors is just the
transpose (§—1 = %T). Thus each coefficient ¢ can be
determined by a vector inner product of its corresponding
vector with the grid point data (2.56) or (2.57). This
orthogonality resulting from the symmetry of L is a very
convenient property as the order of the matrix is fairly

large and computing its inverse would at least double
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the computer time needed over that to compute the vectors.
Alternatively one could use the vectors of the transpose
of é to give a biorthogonal set with those of é, however
this also doubles the computer time needed to determine

the modes and doubles the storage needed for the two sets.
Because of the separation, (2.55) can be rewritten as
6tc(k:'q’:m) = - i\)'C(.k:’Q‘-,m) + r(k,ﬁ,m) (2-58)

where we denote Ehe zth component of the nonlinear

terms i_ig = ¥T9§‘ by r(k,%,m). We refer to c(k,%,m) as
the coefficient of the normal mode and Y as the latitudinal
normal mode because inverting (2.57) fo; the latitudinal

grid point data gives

Y' = Yc(k,m) j (2.59)
which in terms of the scalar grid poiht values is just a
summation over the latitudinal modes evaluated at a
particular latitude times the coefficient of that mode
[see Equation (6.11) of Williamson and Dickinson (1976)}

We discuss these modes in the next section.
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3. Normal modes of ECMWF grid point model

a. Vertical modes:

The vertical modes are the éigenvectors of the matrix Q as
discussed.in Section 2. The matrix C is specified by the
assumed hydrostatic meanstate and the location of the
vertical levels in o space. The ¢ levels in the version

of the ECMWF model used for our experiments are given in
Table 3.1. These values enter in the matrix C along with
the values of 1/y from (2.5). This equation cannot be
applied at the top layer since the nominal value of 5 at
the top is 0. Instead, an effective thickness of the upper
level is-specified in the model by (1/0)1 =1/(ol) = 112.1538,
and Aokno in Equation (2.21) is defined by means of
Equation (2.5).

Each vertical mode or eigenvector has a corresponding
equivalent depth or eigenvalue which represents the mean
depth in the shallow—water4equations (2.36) uséd to
determine the horizontal modes associated with that vertical
mode. Table 3.2 lists the equivalent depths for two
different mean temperature distributions with the nine o
levels specified as above. One temperature distribution

is the global average from 1 March 1965 given;in Table 3.3,
the other is isothermal 360 °K. The table also lists the
phase spéeds of the gravity waves on a non-rotating earth,
/gD. The corresponding eigenvectors are shown in

Figs. 3.1 and 3.2 plotted as a function of o . These modes
and eqguivalent depths can be compared with those from other
models such as Hoskins and Simmons (1975), Williamson and
Dickinson (1976), or Daley (1979). The first eigenvector
corresponding to the largest equivalent depth represents
the external mode having no sign change with height. The
vector corresponding to the second largest depth has one

sign change and is referred to as the first internal mode.
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Each successively smaller equivalent depth has a corr-
esponding vector with one additional sign change until the
last internal mode with the smallest equivalent depth

which changes sign between each vertical grid point.

Comparison of Fig. 3.1 and 3.2 shows that the vectors
corresponding to the two different mean states are very
similar with only minor differences in the details. The
equivalent depths show greater differences where all but
the external and first internal modes are about twice as
large in the warm isothermal state. The external mode is

about 25% greater and the first internal mode about 17%.

As was mentioned above, the vertical modes depend on the
details of the vertical finite differencing. Table 3.2
also lists the equivalent depths for the 1 March 1965

case but with effective thickness of the top layer given
by (1/0,)1 = (22n(01%/01))/01% = 78.5613. Comparison of
column (c) with (a) shows that this change primarily
affects the first internal mode, reducing it a little more
than 30%. The vectors are shown in Fig. 3.3. Comparison
with Fig. 3.1 shows the major change is in the first
internal mode which shows a relative decrease in its value

at the top. The other modes show only minor changes.

b. Horizontal modes

As discussed in Section 2, the vectors Y are the latitudinal
normal modes, each longitudinal wavenumger k and equivalent
depth Dm producing a different set. These latitudinal modes
are traditionally divided into three groups - the slower
westwafd propagating Rossby modes and the faster eastward
and westward propagating gravity modes - according to

their correspondence with the solutions of the continuous
equations. Temperton (1977) points out that in this
discrete system wifh finite depth the Rossby and gravity
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modes are always clearly distinguishable in terms of their

frequency.

The odd-indexed Rossby and even-indexed gravity modes are
symmetric, i.é., u and h are symmetric about the equator

and v is antisymmetric, while the even-indexed Rossby

and odd-indexed gravity modes are antisymmetric. With

the larger equivalent depths the number of zero cross-

ings of each mode tends to increase with increasing

index % but the correspondence is not exact partly because
of the finite equivalent depth and partly due to truncation
error as the modes become very close to zero over certain
latitude ranges. The magnitudes of the frequencies of

the gravity modes increase with increasing index while

those of the Rossby modes decrease. With small equivalent
depths (D~ 1 m) the horizontal modes do not seem to resemble
the continuoﬁs modes, they tend to be more of a computational
nature. Tempertoh (1977) provides more details. and examples
of the modes and compares them with the modes for second-
order centered differences found by Dickinson and Williamson
(1972).
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4., "Linear normal mode initialization

By definition, normal mode initialization, both linear and
nonlinear, is a procedure which is applied in mode space
and modifies the coefficients of selected normal modes in
some prescribed way. Thus, given an initial grid point
data field we must first expand into normal modes. The

- expansion is done sequentially following the analysis of
Section 2. The mean state is first removed from the
prognostic variables then the thermodynamic variables are
combined by (2.22) to get the variable h used in the
definition of the vertical modes. If the primary model
thermodynamic variable is T rather than ¢ , ¢ must

first be computed from (2.15) before obtaining h. The data
are expanded into vertical modes using (2.32), and each
vertical mode is expanded into Fourier modes using (2.41)
then scaled according to (2.49). The symmetric and anti-
symmetric components are found by averaging or differencing
the values from the two hemispheres. Finally, each scaled
. Fourier mode of each vertical mode is expanded into latitud-
inal modes by (2.56) or (2.57).

Once selected coefficients are modified, the expansion
procedure is reversed to obtain grid point data. The scaled
Fourier modes are obtained from (2.59) then unscaled by
inverting (2.49). Vertical mode coefficients are obtained
from the Fourier coefficients with (2.40) and symmetric

and antisymmetric grid point data for u, v and h results
from (2.37). The global grid point data are obtained from
the sum of the symmetric and antisymmetric data for one
hemisphere and from the difference for the other. However,
given h we still must obtain Py and ¢ or T by inverting

(2.22) before adding the mean state back on.
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In order to do the inversion we first obtain an expression
for Pg in terms of h. Elimination of § from (2.19) and
(2.25) gives

9 4np oh .
s T.,-1 "< T -1
—5t "8I CT gt [st-gﬂ cQ ] (4.1
' © 7 "h

or for linear motions

9 4npg T -1 OB

it 81 ¢ 3¢ | (4.2)

If the field consists of only one mode with frequency

vk , (4.2) becomes

iy anpg = iv, gTCT b - (4.3)

which for. nonzero vkgives
T -1

g = g1'C | (4.4)

Since (4.4) is linear in gn Py and h, it also holds for a

sum of modes as long as each mode has a nonzero frequency.

The same expression (4.4) can be derived using the separa-

tion of variables approach of Williamson and Dickinson (1976)

applied to the o system equations. In this approach an
assumed solution of the following form is substituted into

the discrete equations.
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u()\i;ej;cn;t) = U()\i,ej,'t)Un ’ n=1:---7N

v(xi,eJ,on,t) = v()\i,ej,t)Un , n=1,...,N

T(}\i;ej;on:t) = Q(Ai’ej’t)Tn , n=1,...,N

| : (4.5)

$(r3,05,0,,8) = Q(A;,04,t)0, , n=h, ... ,N+3

5(hs,0.,0 ,t) = 22 (a6, ,t)S , n=} N+3
i’Yj'%n> 3t i’vj? n’ y e

ans()‘i’ej’t) = Q(Ai,ej;t)P

This separation of variables, which can only be done in the
case of no mountains (¢S = constant), is obtained by assum-
ing that the continuity equation (2.7) can be written as
two equations involving a separation parameter D. These

equations become

- —oy 8Q _ _ 1 3u 9vVcosg
(RT Pt+e ") ot gDU, Zcose (3 + 56 ) (4.6)
N
Q _ 1 3Q rpT pe3 © 4
P ot = gD E:l 3t [RTnP+®n 1C80) (4.7)

and simplify to the following

3Q 1 du dvcoss '
5t -~ 8D acoss (ax * Tae ) (4-8)
_ _o
(RT P + o ) = U, (4.9)
1 N
= 1 4.1
P =5 §=1 U (o) ( 0)

Equation (4.8) along with the results of substituting (4.5)
into the momentum equations (2.1) and (2.2) give the shallow
water equations for the horizontal structure

A )
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Equations (4.9) and (4.10) along with thé results of sub— 
stituting (4.5) into the hydrostatic (2.15) and thermo-
dynamic (2.4) equations give the vertical structure
equations. The vertical variables Tn’ o Sn and P can be
eliminated from the vertical set to give an eigenvalue

- problem for gD with eigenvector Un’ " The eigenvalue problemr
is the same as that of the matrix C in (2.31), so the eigen-
vectors g giving the vertical structure are the same as o

of (2.28).

A complete solution of the grid point values is then a sum
over all modes so that last equation of (4.5) for 4n Pg
would actually be

T

Lnp = Pg (4.11)

[y

where PT has ‘one component P from each vertical mode

obtained from (4.10) and h is the vector of vertical mode

coefficients of h (2.32). Equation (4.10) can be rewritten

P = 1lg(em) (4.12)
Therefore,

inpg = 1% e g (4.13)
or

gnp_ = ngfigg : (4.14)
which is just the expression we had earlier (4.4). This

equation states that, for linear modes, the surface pressure
is determined uniquely from the h field which in turn is
related to the linear horizontal velocity divergence. There
is no reason to expect observed atmospheric data to satisfy
(4.14) so that given h computed from observed data‘via (2.22),
ans obtained from (4.14) will not necessarily agree with the

original i0pg - This is not surprising since the atmosphere
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is not linear and the surface pressure reflects the non-
linear mass divergence rather than the linear velocity
divergence. Therefore it is not reasonable to usev(4.4) or
(4.14) to compute the surface pressure from the complete h
field. It is, however, reasonable to use (4.4) or (4.14)
to relate the changes made by the initialization procedure
since to a large extent the procedure is subtracting out

linear gravity waves.

Therefore, the'change in surface pressure can be computed
from

asnp_ = 1°C gah | (4.15)
where the A represents the change made by the initialization

procedure,

)
B
o
]

anp —’AgnpS ~ , S (4.16)

=
*
I

h - Ah (4.17)

and the asterisk indicates the initialized fields. The ¢

field is determined by inverting (2.22),

= * — *
¢ = gh - RT npg (4.18)

and ¢ by inverting the (—U) operator integrating up from
¢S at the surface. One can just as easily compute the
change inr$g_from

A§o = gah - RT AT (4.19)
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invert the (_O) operator integrating up from zero at the

surface and subtract the change at the model grid points. . -
¢ = ¢ - A¢ - : ~ N S (4.20)

These two procedures produce identical ¢* fields. If.T
'is desired rather than ¢, (2.20) and (2.22) can~be,combined
and inverted to give
* - * %
T = 6" T(gn"-RTanp_-9). - (4.21)
One can just as easily deal with changes in which case,¢S
drops out of (4.21). ‘

1t was pointed out following (4.5) that the separation of
variables approach of Williamson and Dickinson (1976)
requires the assumption of no mountains (¢S=Qonstant). The
approach of Section 2 does not seem to make that assumption,
only that,a¢s/at = 0 in differentiating the hydrostatic '
equation (2.15) with respect to time. Yet the two approaches
result in the same eigenvalue problems for the vertical and
horizontal normal modes. Actually the analysis of Section 2
also assumes that the mean state is independent of time;

for example, that fhe matrixb§71n (2.18) is independent of
time. ‘However, since the mean state is taken as a function
of ¢ , this assumption is only valid if g is a constant
otherwise the mean state must change with time as determined
from the governing equations. To solve the initial wvalue
problem for the perturbations (2.16)-(2.20) including
mountaing, the time evolution of the mean state must be
included resulting in a problem with nonconstant coefficients
which vary with time and space. This variation produces a
nonseparable problem which is far too large to solve for.
operational'model resolutions. Thus the approach of -
Section 2-does not determine the free oscillations of the
“model with mountains‘present and the modes found in

Section 2 do not feel the mountains except possibly through
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lower average temperature of the mean state if these
temperatures are computed as observed averages on ¢ surfaces
rather than p surfaces. Nevertheless the initialization
procedure can be applied to a model with mountains. As we
will see in the following section, there are problems in
interpreting the linear modal initialization when mountains
are included but these are corrected by the nonlinear

initialization.

We are now in a position to consider how the mode coeffic-
ients are modified in the linear initialization. This
procedure follows directly from examination of the equatioﬁ
for the time variation of the coefficientsQ For the linear

Case (2.58) becomes
s.0(k,1,m) = - iv'(k,1,m)c(k,1,m) (4.22)

If the coefficients of unwanted gravity waves are set equal
to zero initially, they will remain zero for ever in a
linear model. This is essentially all that is done for

linear normal mode initialization.

For a multi-level model, the question remains as to which
of the model's gravity modes should be initialized in this
linear procedure. We saw in Section 3 that the frequencies
‘'of the highest internal gravity modes (with the smallest
equivalent depths) are so low that their presence in the
~initial data should be of no consequence. In practice, a
convenient procedure is to zero all the gravity mode coeff-

icients for the first m vertical modes.

In this section and those that follow, we describe initializ-
ation experiments using a 9-level, global model with a
horizontal resolution of Ax=as = 3.75°. Largely on the basis
of the experiments carried out by Andersen (1977),Aand our
own preliminary experiments with the nonlinear initialization

scheme described in Section 5, we chose m=5 for the linear
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initialization experiment, i.e., all gravity mode coeffic-
ients were set to zero for the external and first four
internal modes. Some justification for this choice was
later provided by counting, for each vertical mode, the
number of gravity modes with periods less than (a) 6 hours,
(b) 12 hours. For the 3.75° grid, the results are summar-
ized in Table 4.1. There were no Rossby modes with periods
less than 12 hours (this might not be the case if the basic
state included a realistic zonal flow). Table 4.1 shows
that eliminating the gravity modes for the first five
vertical modes eliminates all gravity modes with periods

less than 12 hours which seems a reasonable choice.

The initial data for our initialization experiments consisted
of global fields of temperature, wind, and surface pressure
for 00Z on 1 March 1965, as analysed at GFDL and subsequently
interpolated to the ECMWF model's grid. The results of each
initialization experiment were used as initial data for a
24-hour forecast, using explicit centered time differences
with a time step of 300 seconds. At each time step, the
values of selected variables at four horizontal grid points
were written to a 'grid point history file." The forecasts
described here and in the following section were purely
adiabatic, i.e., the "physics" parameterizations were
excluded. Experiments which include such parameterizations
are discussed in Sections 6 and 7. Time-filtering and
horizontal diffusion were also switched off, in order to

show up any high-frequency oscillations in the forecasts.

Fig. 4.1 shows the evolution of surface pressure at two
horizontal grid points for two 24-hour forecasts, one from
the original data, and one from the data modified by setting
to zero the coefficients of the gravity modes for the first
five vertical modes. (In all the figures of this type in
this report, the values are plotted at every time step.)

The forecast from the original data is severely contaminated

by high-frequency oscillations, implying a poor state of
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" balance in the initial conditions. As in the shallow
water experiments of Williamson (1976), linear normal mode
initialization reduces the amplitude of the oscillations,
but by no means eliminates them. In fact, comparison of
Fig., 4.1 with Williamson's results suggests that linear
normal mode initialization is rather less effective in a
multi-level model with mountains than in a barotropic

model without mountains.

Notice in particular the plots of surface pressure at 30 oN,
90 OE, a point over the Himalayas. Linear initialization
has raised the surface pressure by ~ 12 mb compared with the
original data, but as soon as the forecast starts the sur-

face pressure falls by 15 mb in 2 hours.

Further evidence of the unsatisfactory performance of linear
normal mode initialization in regions of high topography

is presented in Fig. 4.2, which shows the geopotential
height and wind fields at 500 mb and 1000 mb over Western
Furope and the eastern Atlantic, before and after linear
initialization. (Lowest model level winds are shown

in the case of +the 1000 mb map.) The initializa-

ation procedure has reéulted in a sharp ridge over Greenland,
where ndne existed before; in other regions of the chart
the changes are relatively small. The spurious ridge is
evident at 500 mb, and even more pronounced at 1000 mb.
(Over Greenland the 1000 mb surface is fictitious, but
examination of the surface pressures showed increases of up
to 18 mb, accounting for the increase in the derived 1000 mb
height.)

This behaviour is not difficult to explain. Over high
topography there will be large deviations from the chosen
basic state from which the normal modes are derived. As
pointed out earlier, the derivation of the normal modes
and thus the linear initialization procedure is in effect

unaware of the presence of topography, and thus misinterprets
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these large deviations as gravity waves, removal of which
requires large adjustments to the mass field. Fortunately,
as we shall see in the next section, this problem is solved
by extending the normal mode initialization procedure tb

include nonlinear forcing.
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5. Nonlinear normal mode initialization

We saw in the previous section that although the linear
normal mode initialization reduces the gravity wave
amplitudes'in the forecasts, it does not eliminate them
completely. The nonlinear terms of the model immediately
regenerate the high frequency oscillations. Machenhauer
(1977) proposed a nonlinear correction technique in which
the coefficients of the undesired linear modes are not set
to zero but rather to a value such that the time-tendencies

of the undesired modes are zero initially.

The basis of Machenhauer's (1977) nonlinear correction to
the normal mode initialization is the assumption that the
nonlinear terms r(k, 2, m) in (2.58) have time variation
much slower than the modes being modified and thus can be
treated as constants. In this case the solution of (2.58)
is

k, %, k,2,m —ivt
c(k, £,m,t) = r(k, £,m) +[;(k,z,m,o)—%g,(k l)m)]e iv
iV'(k;'q‘im) o

(5.1)

where for centered time differences the frequency v is

determined from

v sinvAt
v + I (5.2)

or for Crank-Nicholson implicit time differences from

tanvAt
1 = ——
+ T (5.3)
With constant nonlinear terms r(k, %,m), if the term in
brackets in (5.1) is set to zero, the coefficients will be

independent of time.
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Since the nonlinear terms are not constant and in fact
depend on the initial value of the mode coefficients,
Machenhauer (1977) proposed to iterate in the following
fashion to make the time change of the gravity wave

coefficients zero,

[rCk,2,m)]

leCe, om0 4y = o Tm) (5.4)

where Lr(k,z,m)]11 is computed from the nonlinear terms

using initial conditions from [c(k,g,m,O)]u. Thus one can
do a short forecast, say one time step, with the model,

keep track of the nonlinear terms Qu, QV, QT, QpS, then
follow through the expansion procedure to get r(k,&,m).
However, it is easier to let the model automatically compile
the nonlinear terms by computing the change in the coeffic-
ients over the short forecast and to then subtract off the
linear part - the remainder being the transformation of the

sum of all the nonlinear aspects of the model.

This approach is very convenient as it eliminates any need
to modify the model code itself; however, one must be
careful to apalyse the actual time differencing used by
the model. In the ECMWF model a forward time step is used
initially. If 6tc(k,&,m) in (2.58) is replaced by one

forward time step, the nonlinear term is obtained from
r(k,4,m) = 5tc(k,2,m,0) + iv'(k,2,m)c(k,sr,m,0) . (5.5)

The solution of (2.58) still has the form of (5.1) but the

frequency is complex

_ arctan (v'At) i . 2
v : AT e enll + (v'at)?]

with an exponentially growing modification of the oscillatory
part. This is just a restatement of the instability of

forward differences but represents no problem when applied
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to only the first time step. The condition to eliminate
the damped oscillatory part of the coefficients is still
that the term in brackets in (5.1) be zero. The iterative

procedure (5.4) can be written

[C(k:'q‘:m: At)]u - I:C(k: Q,,m,O)—_l u

[e(k, Z,m,O)‘]u+1 = EC(k,ﬂ,m,O)]u’“ iv' (K, g,m)At

(5.6)

Note that although At appears explicitly in (5.6), the
iterative procedure is independent of the choice of At as

it actually cancels out in the forward difference.

To measure the convergence of the iterative procedure we
use the sum of the squares of the time change of the

coefficients as introduced by Andersen (1977)

K « ,
BALm= 2 z [Gtc(k’ Q,,m,O)" [Gtc(k, 2,m,0)i| (5.7)
k=-K 2eG = ;

This balance is computed for each vertical mode, m, by
summing over all longitudinal wavenumbers, k, and all
latitude indices, 3, of the symmetric or antisymmetric
gravity waves. The closer this measure is to zero for the
gravity waves the closer the initial data are to the desired

balance.

For comparison we also compute the balance (5.7) of the
corresponding set of Rossby modes for which the inner sum
is taken over all latitude indices of the symmetric or
antisymmetric Rossby modes (gcR) rather than gravity modes
{ 2¢@). Of course, there is no reason for this balance to
be zero. In the following we show these measures for the
symmetric modes only, graphs of the antisymmetric modes

are almost identical.
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We first consider the number of vertical modes which need
be included in the initialization procedure for the adiab-
atic 9 level, N24 model with mountains. In these experi-
ments the nonlinear effects arise from the nonlinear
advection or divergence terms in the basic dynamical

equations without any forcing terms.

Fig. 5.1 shows the balance attained with four iterations of
the nonlinear initialization (5.6) applied to the first

1, 2, 3, 4, 5, 7, and 9 vertical modes. Also shown for
comparison is the balance of the Rossby waves, which is
almost identical from one iteration to the next. Note

that since the vertical modes are not orthogonal we can-
not compare the amplitude of one vertical mode with that

of another. The relative amplitudes of the various vertical
modes depend only on the particular normalization used in
defining these vectors and in our case have no physical
meaning. The figure shows that the time change of the
gravity waves of the original data (iteration 0) exceeds
that of the Rossby modes for the first six vertical modes

indicating a high degree of imbalance in this data set.

One iteration of (5.6) applied to all nine vertical modes
reduces the time change in the gravity wave coefficients
of all vertical modes except the last internal mode. It
reduces the gravity wave time change to a level that

is less than the Rossby wave change for all vertical modes
except mode 3, the second internal mode. A second itera-
tion results in an increase in the time change of all modes
and with three iterations the procedure clearly diverges
when all nine modes are included. This divergence of the
higher internal modes is not surprising since the frequen-
cies of the gravity waves corresponding to the small
equivalent depths of Table 3.1 are very low and the funda-
mental assumption that the time scales of the nonlinear
terms are much greater than those of the modes being modi-

fied is violated. The nonlinear interaction between
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vertical modes probably then causes all the vertical modes

to diverge.

Initialization of seven vertical modes also tends to show

a divergence although much slower than with nine. The
second iteration provides an improvement over the first in
the first five modes with only a slight degradation of the
sixth and seventh modes. The time change of the gravity
waves for all vertical modes is less than that of the Rossby
waves so this iteration might determine an adequate initial
state. We will return to this possibility shortly when we
examine the noise at individual grid points in the forecasts

from these initial states.-

The initialization procedure seems to converge when either
the first five or four vertical modes are included, although
not to zero values. The values after three and four itera-
tions are very similar and not too different from those
after two iterations. There is some indication that further
iterations might diverge althbugh we have not continued the
procedure further. . The procedure converges for the first

three, two, or one vertical modes.

Although the iterative scheme does not converge to zero for
the time change of the coefficients when five or more
vertical modes are included, it may still be useful for
practical applications. Two iterations with five vertical
modes reduces the noise as measured by (5.7) in the external
and first few internal modes by two to three orders of mag-
nitude over the uninitialized data. In addition, there is no
reason to reduce the noise to a level below a climatological
level of the particular forecast model. Figures 5.2a and c
show the plot of the surface pressure vs. time at a grid
point over the central United States (40 ON, 90 OW) for
forecasts from the uninitialized data and from data in which
the first one to five vertical modes are initialized for

two iterations. The uninitialized data produce a very noisy
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forecast with oscillations of up to 8 mb and periods as
small as 1/2 hour. Initialization of the external mode
only reduces the amplitudes of the oscillations and elim-
inates the highest frequencies but considerable noise
remains in the forecast. Inclusion of additional internal
modes reduces the amplitudes of oscillation and eliminates
the highest remaining frequencies so that with three modes
initialized, the amplitudes are of the order of 1 mb and
the shortest period a little less than eight hours. For all
practical’purpoées initialization of five vertical modes

" eliminates all high frequency oscillations leaving just

synoptic scale pressure variations.

Fig. 5.2b shows that high mountains do not adversely affect
‘the initialization procedure. This figure shows the surface
pressure at 30 ON, 90 °g over the Himalayas for forecasts
from uninitialized data and data with the first three and
five vertical modes initialized. The general character-
istics of the curves are the same as over low smooth land
(Fig. 5.2a).

Fig. 5.2d shows the difference between one and two
iteratibns of five vertical modes for the point over the
central U.S. (40 °N, 90 °W). Note that the two-iteration
curve is the same as in Fig. 5.2a but with the scale

greatly expanded. At this scale we see some high frequency
oscillations in the forecast but their amplitudes are
extremely Small, being less than 0.1 mb. With one iteration
”only, the oscillations have amplitude of about0.3 mb so that
mosf of the improvement comes with the first iteration.

The second does, however, provide additional improvement.

Fig. 5.3 shows a plot of 6 vs. time at 40 ON, 90 °W and at
30 ON, 90 OE for forecasts from the uninitialized data and

from data in which the first five vertical modes are
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initialized for two iterations. As with the surface
pressure, the noise present in the uninitialized case is

eliminated by the procedure.

For each iteration of the initialization procedure, the
next guess of the coefficients depends on the nonlinear
terms (5.4) which include effects from all modes including
the gravity waves. Therefore, it might make a difference
whether or not the gravity waves of the initially unbalanced
data are included in determining the nonlinear terms for
the first iteration. To examine this possibility we made
one run initializing the first five vertical modes. We
first performed a linear initialization of these modes
setting the coefficients of the gravity waves to zero
followed by four nonlinear iterations. The balance attained
at each iteration is shown in Fig. 5.4. The linearly
initialized state shows some reduction in the noise when
compared with the uninitialized data. The linear initial-
ization reduces the noise by one order of magnitude in the
external mode and half an order of magnitude in the first
internal mode. The other internal modes are only slightly
modified. This balance is not adequate for a smooth fore-
cast as indicated earlier in Fig. 4.1. The balance after
the additional non-linear iterations is just slightly lower
than that starting from the uninitialized data although

the difference may be insignificant in the forecast.

Although these two approaches, with or without a first
linear initialization step, produce a similar balance
after each nonlinear iteration, the question remains as to
whether they result in the same initial state. TFig. 5.5
indicates that they do. This figure shows the 500 mb
height contours and wind vectors for these two cases after
two nonlinear iterations of the first five vertical modes
over the same region as shown earlier in Fig. 4.2. for the
linearly initialized data. The linear initialization

resulted in great distortion in the height contours over



41—

the mountains (Fig. 4.2) which succeeding nonlinear itera-
tions remove (Fig. 5.5a). The two nonlinearly initialized
cases, with and without a first linear step (Figs. 5.5a

and b), result in practically the same state.

Fig. 5.6 shows a plot of surface pressure at 40 ON, 90 °w
for a forecast starting from the data that were initialized
linearly followed by two nonlinear iterations, all applied
to the first five vertical modes. Comparison with the

" forecast from just two nonlinear iterations in Fig. 5.2a
shows that the two forecasts are practically identical
indicating that the first linear step has no influence and
that the final balanced data depends only on the initial
Rossby modes and not on the initial spurious gravity modes.
The necessary balanced state is essentially determined by

the nonlinear interactions between the Rossby modes.

Another question needing examination is the importance of
using normal modes obtained from the actual mean temperature
of the data'being initialized. Fig. 5.6 shows the surface
pressure at 40 ON, 90 OW during a forecast after two non-
linear iterations of the first five vertical modes using

the normal modes for an isothermal 300 ok atmosphere. This
can be compared with the corresponding curve in Fig. 5.2a
"which uses the modes for the actual mean temperature of

the initial data. The 300 Ok modes result in slightly
larger oscillations, but the amplitudes are still less than

a few tenths of a mb.

According to the measures examined here the nonlinear
normal mode initialization works extremely well. It is
also of interest for comparison to examine these same
measures for other initialization schemes. We have only
considered dynamic initialization which until now seemed
to be the most promising approach for an operational fore-

casting environment. Temperton (1976) has shown that dynamic
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initialization rapidly removes at least the external gravity
mode from the initial conditions for a multilevel model

forecast.

The balance measure (5.7) for the initial state determined
from six hours of dynamic initialization using the scheme
due to Okamura (Nitta, 1969) is shown in Fig. 5.7. This
procedure principally reduces the noise in the external

and first internal vertical modes with slight improvement

in the second and third internal modes and very small change
for the higher internal modes. The improvement is not any-
where near as great as that from just one iteration of the
nonlinear modal initialization (Fig. 5.1) yet the dynamic
initialization takes about 40 times as much computer time

as one iteration of the nonlinear modal initializétion.

The surface pressure at 40 ON, 90 °W from the forecast

from the dynamic initialization is shown in Fig. 5.6. This
initialization eliminates the highest frequencies as expected
but there still remain substantial oscillations with periods

of eight hours which could be troublesome in a forecast.

The nonlinear normal mode initialization is shown above to
be a very effective balancing procedure but does it result
in a better forecast? The 500 mb and 1000 mb heights for
24 h forecasts from initialized and uninitialized data are
shown in Fig. 5.8. Two nonlinear iterations, on the first
five vertical modes, were performed for the initialization.
North of 30° the two forecasts are very similar, the major
features are all centered at the same points and their
amplitudes are very close. Equatorward of 30° the fore-
casts are quite different. The uninitialized case shows
the presence of gravity waves sloshing about with unreal-

istic height variations throughout the tropics.

Fig. 5.9 shows the global average height RMS and correlation
coefficients of the two forecasts compared with the NMC

analysis as a function of latitude and time. The initial-
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ized forecast is clearly better than the uninitialized fore-
cast in terms of the measures; however, the difference

may be due to the gravity waves present in one and not the
other. The Rossby-wave part of the solution may not be

that different. To check»this'possibility the data of the
forecast from the uninitialized case were also initialized
before computing the skill score, i.e., two nonlinear itera-
tions were carried out on the first five vertical modes
after the forecast was made of the data at 0, 12, and 24 h.
The skill scores of these two forecasts are then virtually
identical so that it doesn't matter whether the balancing

is done before or after the forecast but it does matter |
whether the balancing is done or not. The natural con-
clusion is that the high frequency gravity waves do not
interact with the low frequency Rossby waves which is not
surprising with a model that does not include forcing terms
that might be influenced by the gravity waves. This might
not be the case when the mode includes realistic physical
processes such as release of latent heat which are strongly
influenced by the vertical motion. In such models vertical
motions associated with erroneous gravity waves could result
in the release of latent heat which might force the solution
to a different forecast. However, to observe such a result
the model and initial moisture and vertical motions fields

must be capable of producing condensation immediately in

the forecast. The modal initialization provides initial
vertical motions; however, the initial moisture distribu-
tion must also be consistent. Andersen (1977) reported no

substantial differences in the 12 and 24 h precipitation
with and without initialization in his experiments with

the spectral model. However, Baede and Hansen (1977) show
that the condensation required a two-day spin up in the
forecast without initialization. This might be due to a
deficient initial moisture field as well as a deficient
initial vertical motion field in which case the initializa-

tion will not improve this aspect of the forecast.
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6. Initialization with friction

One of the advantages of nonlinear normal mode initializa-
tion over other methods is that inclusion of non-adia-
batic and irreversible processes (''physics") is, at least
in principle, quite straightforward. 1In practice there are
some problems. This section describes preliminary attempts
to include a parameterization of boundary layer friction
within the initialization procedure. This parameterization
consists simply of a skin friction effect at the lowest
model level, with no modelling of vertical momentum transfer
between this level and the levels above. When included in
a forecast, this parameterization generates very marked

cross—-isobar flow at the lowest model level.

We first examine the effect of running a forecast with
friction from initial data produced by the adiabatic non-
linear initialization scheme described in Section 5

(2 iterations with 5 vertical modes included). Fig. 6.1
shows the plot of surface pressure during such a 24-hour
forecast compared with that from a similar forecast
starting from the original uninitialized data. The results
are very similar to those from the corresponding forecasts
without friction; the introduction of friction into the
forecast does not significantly regenerate the gravity-mode
oscillations removed by the adiabatic initialization.

This implies that, in order simply to remove such oscilla-
tions from a forecast with a model including friction, it
is not necessary to include friction in the initialization.
On the other hand, for the initial data to be consistent
both with the real atmosphere (as reflected in the analysis)
and the model, it is clear that the effect of boundary
layer friction should be incorporated. To measure the
success of incorporating this effect, it is necessary to
examine the initial state, rather than simply to check for
the absence of spurious oscillations in the subsequent

forecast.
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Fig. 6.2a shows the 1000 mb geopotential height field and
the lowest model level winds after 2 iterations of the non-
linear initialization procedure, with 5 vertical modes
initialized, and friction included in the nonlinear forcing.
There is very little evidence of any cross-isobar flow.

The initial state produced by the adiabatic initialization
also lacks cross-isobar flow as does the uninitialized
state. The reason for this lack even with friction included
becomes clear on examining the structure of the vertical
modes (Fig. 3.2); the frictional effect, which is non-zero
only at the lowest model level, can only be resolved by
including the very highest vertical modes, as the low order
modes have no structure near the surface. The fact that
these highest modes have very low frequencies also explains

the absence of significant oscillation (Fig. 6.1).

We showed in Section 5 that the adiabatic initialization
procedure diverges if all the vertical modes were included
for more than one iteration, yet all vertical modes must
be included to capture the effect of surface friction.
Therefore, to include friction in the nonlinear forcing,
we performed an experiment in which 5 vertical modes were
initialized in the first iteration, and all 9 vertical
modes in the second. Fig. 6.2b shows the resulting 1000 mb
height field and lowest model level winds; the strong
cross—isobar flow characteristic of this skin friction
parameterization has been successfuly produced. Fig. 6.3
shows the plot of surface pressure during a 24-hour fore-
cast with friction run from this initial data. This fore-
cast runs successfully. However Fig. 6.4, which shows the
"balance'" (as defined in (5.7)) during the initialization,
indicates that the procedure is dangerously close to
instability, and indeed an experiment in which it was
varied slightly by initializing 9 vertical modes in the

first iteration and 5 in the second blew up altogether.
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We have shown in this section that effects other than
simple dynamics can be included within the nonlinear normal
mode initialization procedure, but that caution is required.
The experiments described here were rather unsatisfactory

in that only a crude parameterization of surface friction
was included. Also, the large charges forced in the highest
vertical modes may lead to unrealistic vertical temperature
profiles, and it is possible that the instability could be
controlled by including a convective adjustment step after 

each iteration. This question will be examined in Section 7.
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7. Initialization with physics

Following our nonlinear initialization experiments with

an adiabatic version of the ECMWF model (Section 5) and
with a version including friction (Section 6), we performed
a series of experiments in which an attempt was made to
incorporate a more complete 'physics' package into the
model used in the initialization procedure. The package
included a convective scheme, nonlinear horizontal
diffusion, turbulent vertical fluxes (including a boundary
layer), precipitation and latent heat release (Tiedtke et
al, 1979). Radiation was excluded, mainly for computational
economy. For these experiments we used a 15-level, N48

(Ax = A = 1.8750) version of the ECMWF model. To check
the results of the initialization, 24-hour forecasts were
run using a semi-implicit leapfrog time integration scheme

with a small time-filtering parameter (e = 0.05).

A check was first made that the adiabatic nonlinear initial-
ization scheme performed satisfactorily at this higher
resolution. Again using data for 1st March 1965, Fig. 7.1la
and b shows the '"balance" as defined in Equation (5.7) for
the symmetric gravity modes, with the first 5 or 10 vertical
modes included in the procedure. In the 5-mode case, con-
vergence was maintained for five iterations,with some indi-
cation of divergence setting in at the sixth iteration for
the fifth vertical mode. 1In the 10-mode case, divergence
begins to set in for the higher modes at the second itera-
tion. No attempt was made to include all 15 modes (the

highest of which has an equivalent depth of only 4 cm).

These experiments were then repeated with the physics

package included in the nonlinear forcing. For the 5-mode
case, Fig. 7.lc shows the resulting balance for the symmetric
gravity modes; divergence is already setting in for the
fifth vertical mode after two iterations, and all vertical

modes are diverging by the third iteration. Fig. 7.2 shows
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the 1000-mb height and the lowest model level winds after
two iterations with the first five vertical modes, both
with (b) and without (a) physics; there is virtually no
difference between the two. As in the experiments of
Section 6, the boundary layer forcing simply cannot be

resolved'by the first few vertical modes.

For the 10-mode case (not plotted), divergence was immediate
and catastrophic with physics included. Various strategies
were tried to prevent this divergence, including convectively
adjusting the data before the initialization and/or after
each iteration, and only initializing those gravity modes
with a linear frequency higher thén a specified cut-off

value (rather than all horizontal gravity modes for a
specified number of vertical modes). None of these devices
was successful. We are forced to conclude, reluctantly,

that the iteration procedure suggested by Machenhauer (1976)
cannot be made to work for the higher internal vertical

modes of a multi-level model, particularly with non-adiabatic
terms included in the nonlinear forcing. This result might
indeed have been expected, since Machenhauer's scheme depends
on the assumption that the time-scale of the nonlinear
forcing is long compared with that of the modes being initial-
ized; and it would not be surprising if this assumption

were violated for the higher vertical modes in the presence

of forcing by physical parameterizations.

Fortunately, it appears that in order to eliminate high-
frequency gravity-mode oscillations from a forecast with a
model which includes the physics package, adiabatic non-
linear initialization is quite adequate. Fig. 7.3 shows
the plot of surface pressure at 40 °N 90 °w during three
24-hour forecasts with the 15-level high-resolution model

including physics. The solid line shows the evolution
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during the forecast from the original data; as in the 9-
level lower-resolution adiabatic case there are large
oscillations. The dash-dot line shows the evolution in the
corresponding forecast after two iterations of adiabatic
nonlinear normal mode initialization, with the first five
vertical modes included. Although the improvement is not
quite as dramatic as in the 9-level adiabatic forecast,
the initialization scheme can still be rated as very
successful in terms of reduction of high-frequency noise.
Further improvement was in fact obtained by applying two
more iterations of the normal mode procedure, dashed line

in Fig. 7.3.

Neither the original data nor the initialized data (as

shown in Fig. 7.2) reflected the effect of friction in

the boundary layer. As mentioned previously, this effect
can only be resolved by including the higher internal
vertical modes - which cannot be included in the initializa-
tion scheme. However, by a similar argument, if the
boundary layer effects are present in the original data,
they will not be removed during an adiabtic initialization
involving only the first few vertical modes. To demonstrate
this, the fields from the 24-hour forecast with physics
(from the original uninitialized data) were saved and then
subjected to two iterations of adiabatic initialization

with five vertical modes included. ¥Fig. 7.4 (a) shows the
1000 mb height and lowest model level winds from the 24-
hour forecast; the effect of the boundary-layer parameteri-
zation can be seen in the cross-isobar flow, especially
over land. Fig. 7.4 (b) shows the corresponding fields
after initialization. Slight changes can be seen in the

fields, but the cross-isobar flow has been retained.

Thus, in the context of an analysis/initialization/forecast
cycle, provided that the effect of friction is reflected in

the analysis near the surface (with the help of first-
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guess fields from the forecast model including the
physics package), this effect will not be destroyed

by the initialization step. The same is presumably also
true of any other physical effects which can only be
resolved by the higher internal vertical modes of the

model.
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8. Interaction with analysis

Although the nonlinear modal initialization does not affect
the forecast of the Rossby waves in the adiabatic model

as indicated at the end of Section 5, it may be very use-
ful in an operational forecast-analysis cycle. The presence
of large amplitude gravity waves in a short forecast which
is used as a background field by an analysis scheme will
surely affect the resulting analysis in data poor regions
and possibly in data-rich areas. In fact, in a prelimin-
ary 6 h forecast-analysis cycle carried out at ECMWF start-
ing from the DST analysis of Lorenc et al (1977), the
gravity wave noise caused considerable problems with the
data checking routines. Because observations differed too
much from the background field, they tended to be rejected
whereas it was actually the noisy background field which
was unrealistic. This problem arose in preparation for

the analysis after the first 6 h forecast and the cycle
was stopped. When the non-linear modal initialization

was included in the cycle, no similar problems were noticed.

The problem may have arisen because the forecast started
from an analysis which used a climatological first guess
and which would therefore be more unrepresentative of or
inconsistent with the actual state over data poor regions
than if a forecast had been used. After a few cycles of
the analysis-forecast procedure, the initialization might
be unnecéssary as the model propagates information into
the data void regions and the global analysis becomes
more‘cdnsistent. To determine whether this is the case we
examined the balance (5.7) of the analyses after several
6 h analysis—initialization—fofecast cycles. Fig. 8.1
gives the time change of the coefficients of the gravity
modes and Rossby modes in the analyses at 0, 6, 12, and
66 h. Time O is the analysis based on a climatological
first guess, all the others are based on a 6 h forecast
first guess from the preceding analysis. The noise in

the gravity waves is greatest at time 0 but is not
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insignificant in the later analyses. It is only reduced by
half an order of magnitude in any of the analyses using a
forecast first guess, even after 11 cycles. This measure
is still at a high enough level for all the analyses to
indicate that the forecast will have considerable noise if
the initialization were omitted. Therefore, the nonlinear
modal initialization is a useful part of the forecast-
analysis cycle even after many cycles, not just for the

first cycle.

It is also informative to examine the size of the change
made by the initialization. The global RMS difference
between the analysis and initialized data computed on

o surfaces is plotted in Fig. 8.2 for surface pressure,
P WG and.WS. The differences are two to three times
larger with the first analysis based on a climatological
first guess than with ahy of the succeeding analysis based
on a forecast first guess. The differences are nearly the
same for all these succeeding analyses with the surface
pressure difference slightly less than 1 mb, the vector
wind at the eighth level less than 1.5 m s—1 and the geo-
potential and wind at the sixth level less than 25 m and
1m s—l, respectively. These average differences are

within the average observational errors.

Although the average change made by the initialization

is within observational errors, the changes at individual
grid points might be relatively large even over northern
hemisphere land areas with adequate observations. Daley
(1978) proposed coupling the normal mode initialization
with a variational approach wherein a weighted sum of

the changes at grid points is minimized while the non-
linear initialization (5.4) served as a strong constraint.
The weights could be proportional to the expected error of
the original analysis. Such a procedure results in a
complicated nonseparable variational problem which can

only be solved practically by iterative procedures.
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Daley (1978) tested it with a barotropic model success-
fully. Nevertheless, it is worthwhile to determine if a

simpler procedure might serve the same purpose.

Machenhauer (1977) tested a procedure similar in concept

to the insertion of data in four—-dimensional assimilation
but the adjustment is performed by the nonlinear initial-
ization rather than by a model forecast and only data at
one time are involved. After the nonlinear initializa-
tion, the "correct" data are restored, i.e., the initial-
ized values are replaced by the observed values. These
hybrid data are then reinitialized, "correct' data restored
again and the process is repeated until some sort of con-
vergence is attained, the convergence can be measured by
the difference between the '"correct' data and the initial-
ized data. Machenhauer (1977) performed two tests with

the shallow water equations; one in which the height'field
was assumed to be correct everywhere and the other in which
the stream function field was assumed correct everywhere.
The procedure did converge in both cases, the case of re-
storing the height field rather slowly and that of restor-

ing the stream function field rather rapidly.

These two cases are extremely idealized; we never have a
correct height field everywhere nor a correct wind field
everywhere. Instead, analyses produce estimates of the
height and wind fields everywhere with varying degrees of
fidelity. One advantage of the optimum interpolation
analysis method designed for the ECMWF operational suite
(Lorenc et al, 1977) is that, as a byproduct, it produces
estimates of the local error in the analyses. This error
information could be used so that an initialization pro-
cedure makes the largest changes where the analysis is.

least reliable.



~54-

We have performed one preliminary experiment which modifies
Machenhauer's (1977) approach to use this information.
Essentially after each initialization in the insertion-
initialization cycle, if the changes made by the initiali-
zation exceed one standard deviation of the expected analysis
error at any grid points, the changes are reduced to be one
standard deviation at these points. To avoid discontinuit-
ies, the changes at all grid points are actually given by

the B" function

1
B"(8) = [tanh(s™)|" (8.1)

where § is the change made by the initialization procedure

at a grid point measured in units of error standard
deviations at that point and Bn(5) is the change actually
inserted before the next initialization. The B" function
shown in Fig. 8.3 for various values of n has the property
that as n becomes large Bn(5) equals § for 6<1 and equals 1
for &»1. For small n it provides a smooth transition
between the linear and constant regions. For our experiment
we choose n=2. The initialization consists of two iterations

with the first five vertical modes with the adiabatic model.

We performed this procedure for three cycles using the
analysis and analysis errors for the DST case analysed by
Lorenc EE E} (1977). Table 8.1 shows the number of points
exceeding one standard deviation for a few selected variables
after the initialization of each cycle. We see that

surface pressure and geopotential in the upper regions of

the model are being forced closer by this measure to the
analysis while the winds are straying away from the analysis.
This probably is a result of the fact that the winds have
many more points with changes less than one standard dev-
iation than surface pressure and upper level geopotential
and the procedure is proportioning the change more evenly.
The lowest level geopotentials don't have large changes
since they are determined to a larger extent by the surface

geopotential.
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Fig. 8.4 indicates that the procedure is converging. The
lower curves show the BRMS difference between the current
and previous initialized field. After three cycles this
difference is less than 0.2 mb for suface pressure and
0.22m s_1 for the vector wind at level 6. The upper curves
show the RMS differences between the fields after the values
are set to be less than one standard deviation and the
following initialization, i.e., the change made by the
initialization. At cycle 0 this is the difference created
by initializing the original analysis. The changes made

by the initialization are greatly reduced with Jjust a few

cycles.

The above experiment indicates that the procedure may work
in an operational environment. However, it seems premature
at this time to refine such a procedure until both the model
and analysis scheme are more firmly fixed in their final
operational forms and we have more reliable first-guess and
observational error estimates as input for the analysis

scheme.
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9. DISCUSSION

9.1.Changes in finite-difference scheme

The initialization scheme described in this report is based
on the normal modes of the finite-difference model linear-
ized about a particular basic state. For simplicity we
chose a basic state at rest, following the demonstration by
Machenhauer (1977) that no significant improvement resulted
from choosing for example a basic state with zonal flow.
Similarly, we have shown in Section 5 that the choice of
basic vertical temperature structure is not critical. In
general, we can say that changes in the basic state are
simply compensated by changes in the nonlinear forcing;

and the splitting of the time derivatives of the model
variables into linear and nonlinear contributions is to some

extent arbitrary.

By the same token, minor changes in the model's finite-
difference scheme do not necessarily require corresponding
changes in the normal modes used for initialization.
During the course of our experiments, a change was made

to the form of the Jacobian term in the ECMWF gridpoint
model (both are described in Burridge and Haseler, 1977).
Linearizing the new Jacobian gives a different form of the
Coriolis term in Equations (2.42) and (2.43), with the
inconvenient result that the matrix L in Equation (2.51)
is no longer symmetric (reflecting the fact that the new

finite-difference scheme is no longer energy-conserving).

However, because of the approach described in Section 5,

in which the forecast model automatically compiles the non-
linear terms,‘no change is required to the initialization
procedure. The small difference between the linearized
forms of the new Jacobian and the old is automatically
absorbed into the nonlinear forcing. Fig. 9.1 shows the
plot of surface pressure during an adiabatic 24-hour fore-

cast, before and after nonlinear initialization (2 iterations,
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5 vertical modes); in both cases the model used in the
initialization and forecast included the new Jacobian term,
but the normal modes used for initialization were based on
the old. Comparison with Fig. 5.2 shows no deterioration

in the results.

The computational feasibility of normal mode initialization
depends crucially on the fact that the model's linearized
equations are separable in the vertical and horizontal
directions. Application to global (or hemispheric) grid-
point models based on anything other than a regular latitude-

longitude grid seems to be ruled out.

Limited-area models based on a regular latitude-longitude
grid can probably be handled; the corresponding normal
modes should be derived under the assumption that the time-
derivatives are zero at any non-periodic boundaries (unless
these are regarded as free-slip walls), and non-homogeneous
boundary conditions could be absorbed into the nonlinear
forcing. Limited-area models based on stereographic pro-
jections may possibly be amenable to nonlinear normal mode
initialization provided that the domain is rectangular--
any other shape would not allow the required separability.
It would presumably be necessary to set up the linearized
equations assuming a constant Coriolis parameter and
constant map factors (or at least a function of one coordi-
nate only), and to absorb deviations from these constant
values into the '"nonlinear' terms; for this reason the
proCeduré is likely to work only for limited-area models

of modest horizontal extent; Further study is reQuiréd
before a firmer assessment can be made of the applicability

of normal mode initialization to limited-area models.
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9.3 High-resolution models

One computational aspect of normal mode initialization

which has not yet been mentioned concerns the determination
and storage of the horizontal normal modes. Having separated
the linear problem vertically, longitudinally, and into
symmetric/éntisymmetric modes, we obtain a large number of
sizeable matrices whose eigensystems must be computed.

This can of course be done once and for all as long as the
results can be stored. For a model with L levels and M
gridpoints between pole and equator, the stofage required
(assuming AAx = Af) amounts to approximately 36 x L x M3
words. Examples for several grid resolutions are given in
Table 9.1, from which it is clear that a severe storage

problem exists for global high-resolution models.

This difficulty can to some extent be alleviated by modifying
the computational procedure outlined in Section 5, in such

a way that the only eigenvectors which need be stored are
those corresponding to normal modes which are modified by

the nonlinear initialization scheme, i.e. only the gravity
mode vectors for a certain number of vertical modes or

whose frequencies are greater than some specified cut-off

value.

Equation (5.6) can be written in the form

ik _
[s4c(k, 2,m,0)]

iv' (K, 2,m) (9.1)

Ac(k, o,m,0) =

where Ac is the change in a normal mode coefficient from

one iteration of the nonlinear initialization scheme to

the next. The time increment 6tc was determined in Section
9 by expanding gridpoint fields at t = o and t = At in 7
terms of normal mode coefficients, and taking the difference
of the two resulting coefficient fields. However, since

the transformation from gridpoint to normal mode space

consists of a sequence of linear operations and the time
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difference is linear, we can equally well perform the trans-

formation directly on the time-derivatives of the gridpoint

fields. (These can be obtained either by differencing the
gridpoint fields from the forecast model at t = 0 and at

t = At, or by writing a special version of the model which
writes out a field of time derivatives instead of a '"fore-
cast" field at t = at). Similarly, rather than using
Equation (5.6) to determine new values of c(k,%,m,0) and
then performing an inverse transformation to give a new
field of gridpoint values, we can instead use Equation (9.1)
to determine values of aAc(k,? ,m,0) and then transform this

set of increments back to gridpoint space, where they can

be added on the old gridpoint fields. The device used in
Section 4 to separate changes in the pseudo-height variable
h into changes in Pg and ‘T fits conveniently into this

modified procedure.

It is easy to see that the transformation between gridpoint
apd normal mode space required in this alternative procedure
involves only the eigenvectors corresponding to normal modes
which are to be modified. Thus the storage required to
initialize the first five vertical modes of a model with

M = 48 and any number of levels is reduced to ~ 14 x 106
words. Experiments with such a model (with 15 levels) have
been performed on the Cray-1 at ECMWF; storage requirements
were in fact further reduced by "packing'" the eigenvectors
four to a 64-bit word. By scaling the eigenvectors and
storing them as 16-bit integers this allowed sufficient
accuracy, while reducing the storage to 3.5 x 106 words——
about twice the size of a gridpoint data set at this
resolution. The modified procedure has the additional
advantage that it becomes unnecessary to save a file of

normal mode coefficients from one iteration to the next.



—60-

It is worth mentioning that this storage problem is peculiar
to gridpoint models, since they require considerably more
degrees of freedom than spectral models for comparable
accuracy. From figures given by Andersen (1977) it appears
that storage requirements for the normal modes of spectral

models will be quite modest for any likely resolution.

9.4 Initial conditions for semi-implicit forecasts

In comparison with explicit schemes, the semi-implicit time
integration scheme achieves its computational economy at
the expense of reduced accuracy in the treatment of gravity
waves. Janjic and Wiin-Nielsen (1977) have argued that
this may lead to misrepresentation of the geostrophic
adjustment mechanism and consequently less accurate forecasts
of the Rossby modes in semi-implicit integrations run from
unbalanced initial data. However, experiments at ECMWF
have shown that differences between explicit and semi-
implicit forecasts become negligible when normal mode init-
ialization has been applied to the initial fields before

the forecasts.

9.5 Diagnostic applications

Besides providing improved initial conditions for numerical
forecasts, normal mode initialization may be a useful
technique in diagnostic studies. For example, the deter-
mination of certain energy budget statistics from analysed
data requires the specification of a field of vertical
motion. The results may be quite sensitive to the way in
which this is done, and the application of nonlinear normal
mode initialization may well be the best available means

of specifying a vertical velocity field, although the
fidelity of such a vertical motion field still depends on

the quality of the model used to specify the nonlinear terms.

I
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Table 3.1 o levels of model

vertical

grid o]
index

% 0.00000
13 0.03429
23 0.12620
3% 0.25926
43 0.41701
5% 0.58299
6% 0.74074
7% 0.87380
83 0.96571
9% 1.00000
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Table 3.2 Equivalent depths (m) and corresponding phase
speeds (m s 1) of gravity waves on nonrotating
earth for mean state given by (a) average of
1 March 1965, (b) 300 OK, and (c¢) average of
1 March 1965 but with modified (1/0)1

vertical
mode
index (a) (b) (c)

1 11,502.5 14,664.8 10,153.1

2 7,014.8 8,255.4 4,701.0
= 3 960.85 1,798.7 851.40
) 4 209.69 494.5 205.05
S 5 65.43 157.9 64.90
'§ 6 20.12 53.74 20.06

7 7.287 17.66 7.275

8 2.357 4.866 2.366

9 .498 .809 .408

1 335.74 379.10 315.44
2 2 262.19 284 .43 | 214 .64
f? 3 97.04 132.77 91.34
" 4 45.33 69.61 44 .83
§ 5 25 .32 39.34 25.22
o 6 14.04 22.95 14..02
0 7 8.45 13.16 8.44
< 8 4.84 6.91 4.82
= 9 2.21 2.82 2.21
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Table 3.3 T(o) for 1 March 1965

vertical _

grid T(o)

index
1 2202.304
2 209.450
3 218.147
4 | 237.600
5 256.647
6 268.710
7 277.454
8 283.131
9 285.666

Table 4.1 Number of gravity modes (out of a maximum

possible 4806) with periods less than
(a) 6 hours, (b) 12 hours

vertical
mode (a) (b)
1 4578 4602
2 4554 4598
3 4218 4539
4 1979 2622
] 0 40
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Table 8.1 Number of points with differences greater
than one standard deviation of expected
analysis error
iteration ¢ b ¢ u u v v
3 6 9 6 9 6 9 Ps
1 2222 3950 4454 3770 3276 4169 3570 .1556
2 2677 3733 4452 3627 3247 3946 3513 1894
3 2900 3674 4448 3491 3148 3808 3433 2112
Table 9.1 Storage requirements for normal modes
L = no. of levels; M = w/2A8 ‘ Words
L =9, M= 24 (model used in this report) : 4.5 x 106
L =15, M = 48 (possibie operational model) 60 x 106
L =15, M = 60'(possible operational model) 117 x 106
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Fig. 2.1 ECMWF grid point model vertical grid.
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Fig. 4.2 (a) 500 mb geopotential height and wind fields,
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(b) 1000 mb geopotential height and wind fields,
original data,

(c) 500 mb geopotential height and wind fields
after linear normal mode initialization, and

(d) 1000 mb geopotential height and wind fields
after linear normal mode initialization.
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(a) 500 mb height contour and wind vectors for linear

initialization followed by two iterations of non-
linear, initialization with the first five vertical

modes,

(b) as (a) without the initial linear initialization.
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1000mb height field and lowest model level wind
vectors after nonlinear initialization with friction
(a) 2 iterations with the first 5 vertical modes

(b) 1 iteration with 5 vertical modes followed by
1 iteration with 9.
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