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Abstract

The problem of initialisation is considered. The study is

based on the shallow water equations permitting gravity and
Rossby waves. Perturbations on a state of rest are treated
'as a linear problem, and the perturbations are permitted to

vary in two horizontal dimensions.

The geometry is a plane on which the Coriolis paréméter
varies 1inear1y with the meridional coordinate.A This means
that the treatment is different from the standard beta-plane,
The eigen-value problem is solved and the eigéthunctions are
Hermite polynominals multiplied by an eprnentialtfunction.
The set of éigen—functions is orthogonalioVer the infinite

plane.

The solutions are fitted to initial conditions, and it is poss-—-
ible to find the partitioning Of the initial amplitudes on

the various wave types. It is thus possible to make 2
comparative study between different initialisation procedures
including non-divergent and quasi-nopn-divergent initial con-
ditions. Normal mode initialisation is also considered, It

is demonstrated that the former procedures result in
significant amplitudes in the gravity waves on the large scale,
The relations between the wind field and the mass field are

derived for the normal mode initialisation.
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1. Introduction

The initial conditions to be used in numerical weather
forecasting with the primitive equations are difficult

to specify. It appears desirable to determine the
conditions 1n ‘such a way that the amplitude of the
gravity waves is small, 'whlch means that some form of
balance will have to exist between the mass field and the
wind field. It has therefore been customary to impose
Vsuch a balance through one or the other form of the

so- called balance equat1on

Hinkelmann's classical study (1951) of the meteorologlcal

noise problem 1nd1cated that an 1n1t1a1 balance will
reduce the amplltude of the grav1ty waves con51derably

as compared to those which Would be present without the
required balance conditions in the initial state. The
investigations by Hinkelmann (loc.cit.) as well as later
studies by Phillips (1960) and Gollvik and Thaning (1977)
have assumed that the”perturbations‘depended on the zonal,

vertical and time colordinates, but not on the meridional

colordinate. Studies by Wiin-Nielsen (1971)and Kasahara

(1976) have used a spherical geometry, but the determination
of the structure and the speed of the waves become rather
cumbersome in this casé because the frequency equation

must be solved in this case‘by expanding the variables

in infinite series of either associated Legendre functions

or Hough functions.



One of the most promising developments in initialisation
procedures in recent years is the so-called normal mode
initialisation. This topic.has been treated extensively

in the literature. A recent paper by Daley (1978)

summarises the most important developments including the

non linear normal mode initialisation by Machenhauer

- (1977). In spite of the extensive investigations it is
nevertheless of interest to compareevarious‘initialisation
schemes using a simple model and to obtain from the model
an explicit solution which, from the linear pdint;of view,
eliminates the gravity waves completely. Such a model

..will be presented in this paper.

~In thefpreSent,study we shall adopt the shallow water
.equations. We shall formulate the equations of the
problem on a plane on which it will be assumed that the
Coriolis parameter varies linearly with the south-north

- co-ordinate. The variations will be periodic in the

east-west direction, and the plane will be infinite.

. The assumptions made here are thus different from the
~-usual beta plane assumptions. We shall furthermore
srequire that the perturbation quantities remain finite

at infinity in the south and north directions.k



This formulation has the advantage that it incorporates
the required space dimensions, that the frequency

equation is relatively simple, and that the structure

of the waves consequently can be evaluated rather easily.
Although the present paper will treat the linear case only
it is possible to-expand the investigation to include

nonlinear effects.

2. The Model

The ba31c equatlons are the standard equatlons for a
shallow water model. The co-ordinates X, ¥ and t are
replaced by nondlmen81ona1 quantltles E, m and T as

follows

x=10 gy @y e=g (2.1)

while the velocity components and the geopotentialyarei{

scaled in the following way

3U , 42y 28 3U - _ .28
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with
=5 vE (2.4)
f 2 o :
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Using the values B = 16 x 10"12m_1 s_l , T = 10'4 S"l

0

2 s7%we find q = 0.47.

ﬁand,éo =:9,8 x 8800 m s

It turns out to be convenient to express each of the

dependent variables in a series of the form

. % by imkE
Z(E;TI,T) "'nzo mz__‘_ - Z(m,T],T)wn (n) e (2.5)
where k = 27/L and L is the zonal length under consideration.
v,(n) , related to.the Hermite polyromials, and the .
properties of the class wn(n)‘are given in Appendix 1.
The form (2.5) is selected because these functions

naturally appear in the linearised perturbation problem.

The linearised equations are obtained from (2.3) by
neglecting the terms in the brackets on the left hand side
of the equations and by setting ® = 1 on the right hand
side of the last equations. ‘ ' A '

Using (2.3) and (2.5) together with the orthogonality
properties of the functions exp(imkg) and wn(n) we may
write the system (2.3) in the form

du _
é?hp) = ~q®*] ] ) ipk U(m-p,n,) U(p,n,) I(n, ,n,, n)
P nln2
2
- q®) ] ] #V(m-p,n;) U(p,n,){ /0, I(n ,n,-1,n)-
)
- /H;:T I(n,,n,+1,n)}

imk ®(m,n) + vn V(m;n-1) +/ n+l V(m,n+1)
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d®(m n) _
—_— = - a2 )} ) ipk U(m—p,gl)<®(p,n2) I(nl,nz,n)
b 0, ‘ |
kil q2 2 z Z % V(‘m_p;nl) @(p:nz){ /?2 I(n1;n2-1)n)_
B, m, | o &
- ¢n2+T I(nl,h2+1,n) }
- a® ] I ] ipk ®(m-p,n ) U(p.n,) I(ny,my,n)
p myy
-q®> ] ] 1% emp,n) V(p,ny)1/n,I(ny,ny-1,n)r
p nn, o
- Vn,+1 I(nl,n2+1,n)}‘
where
I(n,,n,,n) = J @nl (n) wnz(n) ¥ (n)dn - (2.7)

The system (2.6) can be used for numerical integrations.

We note that the variables U(m,n), V(m,n) and ® (m,n) are
connected through the linear terms, i.e. the pressure force
and the Coriolis force, in such a way that U(m,n) communicates
with ®(m,n) , V(m,n—l) and V(m,n+1), while V(m,n—l)
communicates with U(m,n-1), U(m,n+1), o(m,n-1) and o(m,n+l),



With respect to n we may say that even (odd) components
in U and ® communicate with odd (even) components in V.,
These properties make it possible to form low order systems
from the general equations (2.6). Such systems will be

considered later in the paper.
The integrals (2.7) represent interaction coefficients.

They can normally be calculated exactly as demonstrated

in Appendix 2.

"B;fThe‘iinear‘problem

' The differential equations for this problem are obtained
from (2.3) and take the form |

3t - T 3z + nV

v _ pYo) '
-~ - v (3.1)
3@ _ _ ,2(aU0 , 3V

3T 4 [ag * an]

We shall first solve these equations using perturbations

of the type

U §(n)] ik(£-Ct)
| v}" =1V} e | | | (3.2)
Tel e ' |

N

- (3.2) is inserted in (3.1) . We express U and @ in terms

of V and obtain
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U= — 1f - {q?%% - Cnv| (3.3)
k“(q cz)y v o ' 3

A . 2 A‘}

® = - 112{q [ C gX - T’]V
k*(q® - ¢*)

Using the expressions (3.3) it is easy to derive a single

equation for V. This differential equation is

. . SN ,

2 1 1 k 2 ) ~ )

%ﬁ¥ + {— = nt- = - = (a®- ¢®)y v=0 (3.4)
a C a :

N

(3.4) represents an eigenvalue problem and is a standard
equation which is solvable in terms of Hermite poly-
nbmials and exponentialkfunctions as seen from |
Abramovitz and Stegun (1965) provided C satisfies the

equation
k2, / , o L
- q 1— ’+ -——; (qz - CZ) = 2n+1 ‘ ‘ (305)
or
i} . 2 :
—L(2n+1) 4 +q¥lc-L =0 (3.6)
2 kZ

(3.6) will have three roots correspondlng to a Rossby
wave (a small negative value of C) and to external gra?1ty
waves travelling in the p081t1ve and negative x- dlrectlons
(1arge positive and negative values of ¢). It may be
instructive to consider the dimensional form of (3.6).
We note first that |

fZ

o B '
C«™ B G Ky = E; k (3.7)

where the asterisk dénoteé the dimensional quantities,
Noting further that
CRCg . - & =2 =/&_ (3.8)

1= ° R, ’CI Kk
I *

b



“we find from (3.6) that c, satisfies the equation

3 2
Cx - R2n+1)cg:g-+cg] C, - Cpez2=0 (3.9).

Rg
From (3.9) it can be seen that an approximative value of
the speed of the Rossby wave is

@ ‘ (3.10)

1+ (2n + 1) CR
Cg
while the corresponding approximate values for the

gravity waves are

’ // | Cgr
= + + + —
Cupy = *Cg/1+ (2m+ 1) g

- (3.11)

Fal

When C satisfies (3.5) we may find the expressions for U,

V and & . To get convenient expressions it is an

advantage to introduce a variable n, by the expression

n =.|/ % . n (3n12)0
*

Using furthermore (3.5) we find that (3.4) is written in
the form

dz% 1 2n+1 | & ‘

-d_ﬂ-i- + - Z T]:= + ) V=20 (3013).
Writing further

A "%ni ~

V==¢e Vi (3.14)
we find that V, satisfies the equation

d2V* d-V* A .

a‘—n':zk' = Ny a?]—*— + n V* = 0 | (3.15)



which is the differential équation for the Hermite
polynomial He,(n,) . It follows therefore that the solution
to (3.4) can be written in the form

T(ny) = v, e TIM% Hel (no) = Vv (ne) (3.16)
where Vn is redefined in such a way that ?n is Eormalised
as defined in Appendix 1. Solutions for U and ¢ are found
by introducing the variable n, in (3.3), inserting from
(3.16) and using the relations given in Appendix 1 for

the functions y_ . We get i

U _ ik /ng 1 ik /(a+1)q _1
U(n*) K2 2 q+ C Vn lPn—l - K2 2 a - C Vn wn+1

~ _ ik / nq 1 ik n+1
®y) = - 5 ¥ 3 gFc Yn¥n1 750 S aan

k?

Vn wn+1
q - -

(3.17)
(3.17) shows as expected that if V is even (odd) U and
will be odd (even). The constantS’Vn are determined by

the initial conditions as follows. We note that U and @

have the form

u

U1 Yot F Uz Vg

| (3.18)
® =01 ¥y g * ®2 Vg

The initial conditions must be specified in this form also.
107 20 ° 10

@20 and noting that three different modes exist

corresponding to the three values of the phase speed

Dehoting the initial values by VO’ U U ® .. and

(Cl,Czand C3) we have the following equations



A A FaY . el
Vo +V, + V=V
Upp v U+ Uy3= Uy
U U, ..+ U,.=1T

| :A21 227 23 Ago (3.19)
gt Ot 03= 0y |
A~ ~ ~ YN

.
Dyt Ot B3 Ty
To solve these equations we note from (3,17) that

®,=-qU,, ®.=-qU,, ,®_.=-q0U
A11 A11 A12 A12 A13 A13 (3.20)
@ = ATy @y AUy, , @3=  q Uy,

It follows therefore that (3.19) will have non-trivial
solutions only if
(3.21).

=_qU ’® =qU

20 20

To obtain solutions to our system it is thus necessary to
further restrict the initial conditions in such a way that
(3.21) is satisfied. As we shall see later (3.21) is
quite restrictive., Inserting from (3.17) in (3.19)
disregarding the last two equations because of (3.21)

we obtain:

Ig
1 2 3

_ik 1 ¢ ik /g 1 o ik f@Dg 1 & _ -

2 2 et T e g etz wg BT Yo
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The determinant of (3.22) is

N B 1 ‘ C
A=7 7 7%%§§§§ [Cicz(c1"02) * C2 5(C,m €
+ G Cy(G- ¢ ] (3.23)

~ A

and the solutions for Vl’ V2 and V3are

2 T ’ : C — C A

A _ 1 a® - 2 1k
S S Creni et A U
: (vn+é)q C2 - C»3 a

Y F T 10
(qa-C,) (a-C5)
s 1 ik /ng- €2 - %5 -
A k%7 2 (a*+C,)(a+Cy) 20
A~ 1 g2 C3 - C - 1 ik
V, = -1 xr PO ey grm oy Vo TR (3.24)
/(a¥1)q_ C3 - Cy -
2 (d-Cy0d - G) 10
C, ~
1 1k / 1
YE R <q+c><q+c1>Uzo
N 1 g2 C, -G A 1 ik
] - Vh (6 .
Vi =-f i 0O s ey qrm o) o TR KT

” (q-C)(q-c)U

C N
1 ik /nq 2
+ = —_
Ak 2 Zq+C1,(q+C2) U20

where the expressions for_V2 and V 5 are obtained by a

cyclic permutation of Ci’ 02 and C3n

We note that the determinant (3.23) is independént of the

specific values of the roots and depends on the coefficients



of the cubic equation only. It can be shown that

>

I

|
=

%t //47[(2n+1) a?]®-27 &+ (3.25)
Yn(n+l)

The expressions derived in (3.24) and (3.25) are general

and can be used to calculate 91 , %2 ahd 93 for any

permissible initial conditions. The corresponding values

of the zonal wind components are obtained from (3.17) and

those of the geopotential from (3.21).

As mentioned in the introduction it is required to specify
the initial conditions in such a way that the amplitudes
of the gravity waves vanish. This condition can obviously
be saEisfifd exactly in our linear model by requiring

that V2 = V3 = 0 in (3.24). These two relations result in
Ewo inhogogeneous linear gquations. We select to express

U10 and U20 in terms of VO and obtain

- ik /nq 13
107 k2 2 qt+Cq

n N — n (3.26)
U = - ik/(n+l)q _1 v |

20 k? 2 q-2C

o

Since (3.21) must be satisfied we may rewrite (3.26) in the

form
Vo= ik /— (1 + El )y o
o nq 10
(3.27)
= N — - - o)
VO (n+1)q ) T 20

If (3.26) and (3.21) are satisfied we will have vanishing
gravity waves during an integration of the linear model.
These equations correspond therefore to the normal mode
initialisatibn. It is of interest to compare these
relations for the ideal initial conditions with othér
initial conditions which have been used. The most simple

starting condition is the geostrophic relation.
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Considering first the meridional component we note from
(3.1) that we would impose the condition

an = %% ‘ o ; : (3.28)

Considering (3.2) and (3.12) we may write (3.28) in the

form .

/’% ne V_ = ik o (3.29)

Using (3.18) and (A1.7) from Appendix 1 we find that:

V. = iky Z—'@
go (n+1)q

It is thus seen from:(3.27) and (3.30) that’the'gé0strophic
relation for the meridional wind component will result in
small amplitudes of the gravity waves only when C1 q

which will be the case for sufficiently small scales.

We are néxt going to show that the full geostrophic relation
is not a permissible initial condition for our system because
of (3.21). Introducing (3.21) in (3.30) we find that

o 1
Uio™ - Ik

N}
Q

~ . A _ 1_ ~
2q Vgo ;o Uy = 3% "3q Vgo (3.31).
The proof will be completed if we can demonstrate that (3.31)
is in conflixt with the zonal geostrophic relation determined
from '

ng, + £ % - o | (3.32)
dn
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Using again (3.18) and (A1.7) we find after some
calculation that (3.32) reduces to the condition

1d/ﬁ + U,/ n+l =0 ‘ (3.33)

It is obvious ‘that (3.33) is not satisfied by the
components in (3.31). We have thus shown that the
geostrophic assumption with a proper variation of

the Coriolis parameter is non-permissible as an initial
condition. It is however easy to show that (3.30)

and (3.31) are the proper initial conditions if we
require that the initial horizontal divergence shall

vanish. We find

.10 * 2q

= Tiw 1 /n_ 5 - T /n+l o
D= [ik U 35 Vo J¥n_1 *[ 1k Ugyo =7 ~2q Vol¥nat

(3.34).
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If we require that D shall vanish we obtain (3.31).
Considering therefore the case that we impose D = 0
as an initial condition we find from (3.24) after some

calculations that

v /@) G Cl(G - S)
) 2_ (2 2_ (o2
v, bk (a®- C;)(a*-C3)
v, /JE@EFD) G C (G - ) (3.35)
- —
o2 2_ (2 2_ (2
vV, bk (a®- €5 (u"= C])
Vi _ /m(m+l) ¢ C,(C - C)
Wie 2 2_ (2 2_ (2
Vo bk (q C, )k(q Cz) N

From these expressions one may easily calculate the ratios
of the components U11’ U12, U13, U21, U22, and U23 tq

the initial values ﬁloand QZ respectively.

0.
Since the only geostrophic initial state is one of rest it

may also be of interest to consider the partitioning of initial
amplitudes into;RosSby waves and gravity Wéves for a couple

of other cases. Assume for example that we have a ndn—
geostrophic deviation in the zonal windfield or, equivalently,
in the>height field becausé of (3.21). We may then calculate
Eow tgis init}al‘amplitude in, say, ﬁlo is distributed among
Uii’ U12 and U13 and how much we find in the other zonal
component and the meridional component. To be specific, if
ﬁu)+ 0, 620= %O = 0 we find that
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. c,-20C
Lo _1ik An*1) q 2 3
U

- :
U | C, - C '
Uiy k? 2 (a*+Cy)(a-C,)(a-C3)

U C. - C

.*g}* -2 123 (n+1) 2 >

where the remaining values are obtained by cyclic

permutations among C, , C, and Cj.

2
Similarly, if the initial non-geostrophic amplitude is
in Vo’ but not in thﬁ zonal wind and geopotential field
we find for V_ $ 0, U, = U,, = O that

ZL _ _ /n(n+1) g? Cz - CB
2 2 2 2 2
v, A k% (q-C)(a"-C3)
11 n/n+l q?/q . C, - G

— = - ik : -

v, A VD k* (q+cl)(q2—c§)(q2-cg)‘(3.37)
.U . 2 /= c, -C .
2, (n+1)vn q%v/q ik 2 3 :

v, AvVZ Kk (a-C ;) (a*-C3)(a*-C%)
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This section contains some results of numerical
calculations based on the analysis made in Section 3

of this paper.

The first example is based on the initial condition of
no divergence, i.e. the equations (3.29) and (3.30).
Figure 1, showing Vl/V0 as a functign of the zonal

wave length measured in the unit 10 m and the meridional
parameter n, indicates that Vl/vo is éxtremely small
for all values of n as long as L, the zonal wave length,
is small. However, as L ihcreases the ratio Vi/V0 will
increase and for large values of L we see that the
ratio increases with decreasing values of n and can
become as large as about 0.2 for L = 28 and n = 1, i.e.
for a large scale in both the zonal and meridional
directions. A similar figure (not reproduced) is found
for the ratio V2/Vo' Figure 2 shows the ratio VS/Vo
for the Rossby waves in the same arrangement. Here

we observe that the ratio is very close to unity for
all values of L and n. The details show that V3/Vo

is slightly larger than unity for small values of L

and less than one for large value of the zonal wave
length. However, at no place is the value less than
0.965.
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Fig. 3 shows the ratio U12/U10 which is in general small
indicating that the initial assumption of no divergence
reduces the amplitude of the gravity waves considerably.
The exception is on the largest scale (L large, n small)
where the ratio is about 0.2. Fig. 4 showing the ratio
U13/U10 ,i.e. the amplitude of the Rossby waves, indicates
that the ratio is everywhere larger than unity and may be
as large as 1.3 for large L and small n. The ratios

g v Teee Uy /U s Uyn/Uyy s Uyy /Uy, are
similar to the corresponding ratios for U1 except that

relating to U

IEB/UQO is everywhere smaller than unity and is about
0.8 for large L and small n.

The general conclusion from this example is therefore

that an initial condition of no divergence will be

an effective filter of gravity type waves at small scales,
but that the gravity waves contain a considerable

fraction of the initial amplitude for the largest scales.
Furthermore, the amplitude of the Rossby waves in- the zonal
mbtion, see Fig. 4, is considerably larger than the

initial amplitude on the largest scale.

In the next example we shall assume that qO + 0 while
Ibo = Vo = 0. We may think of this case as a small
disturbance introduced in one of the two zonal wind
components. Under these circumstances we have
Vl-!—V2+V3 =0
Ut Uyt 03 = 0
U21+ U22+U23 0

10 (4.1)

Fig. 5 shows that the response is a meridional wind field
Vé/UloWhich is large (0.64) on the middle scales, but small
when L is small. The response in the Rossby mode, Vﬁ/Ulo’
shows a similar distribution as seen in Fig., 6. The gravity
modes in the zonal wind, i.e. Uy, /U;y and U,,/U,, , are

very different because U“/U10 is relatively small for all



values of L and n not exceeding about 0.15.anywhere (not
shown). However, the other gravity mode Q2 /U10 has a
large amplitude for small L decreasing to about 0.4 for
large L (Fig. 7). The Rossby mode behaves in the opposite
way with small values for small L increasing to about 0.5
for large L. (Fig. 8). The fields Uﬁl/Ulo’ U22/U10 and
Ué3/U10~are such that the three ratios are small for small
L. The two gravity modes increase in amplitude with L
attaining maximum values of about 0.25 for large values of
L. The corresponding Rossby mode is everywhere negative

with a maximum absolute value of 0.5.

The last calculation assumes that V + 0 and U, .= U,.= 0.
(0] 10 20

For this case we have

VRV, vV, o=V, R |
U11+ U12 +;U13 = Ov , T .(4.2)
Uy * Ugy ¥ Uyy =0

For the three modes of V we find that the two gravity

modes, V, /VO and v, /Vo’ are close to zero for small
values of L but increase with L to maximum values of about
0.5. The Rossby mode is thus small for small L and
decreases with L to quite small values at large L (Fig.9).
The zonal gravity mode U12/Vo is shown in Fig. 10 with
large negative values on the middle scales. The correspond-
ing Rossby mode, U13/Vo , in Fig. 11 is positive with
maximum values on middle scales. Fig. 12 and Fig. 13 show
finally U21/Vo and U23/Vo’ a gravity mode and the Rossby

mode for this case.

In summary, for a given value of VO with qﬂ = U20 = 0 we
find that the Rossby mode in the meridional wind is large
only when the scale is small, while the Rossby mode in the

zonal components is largest on a middle scale,
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5. A Low-order System

The system considered in Section 3 is based on the
primitive equations. Most initialisation schemes used in
practice are based on the balance equation or, in more
general cases, this equation combined with the quasi-
geostrophic or quasi-balanced model equations which are
used to calculate a balanced initial state, although the
predictions themselves are done with the primitive
equations. It is very difficult to use the system
treated in Section 3 to test the various initialisation

schemes because it is a minimal system.

In this section we consider a different minimal system
which is derived from the vorticity, divergence and
continuity equations. Our starting point is still (3.1).
From the first two equations of motion we derive the
vorticity and divergence equations in the usual manner.
Denoting the stream function, the velocity potential and
the geopotential by S,, X, and &, respectively, we find
that

3V?2s 2 9S8 x OX x

S X = - —_r

3T NV "X« 5E an

AV, _ _ 2 2 35, _ a

- V20, + nVS, + 5% - 5 (5.1)
50

i A S

We shall next assume that S,, X, and ¢, are developed in

series of the form
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S S(m,k,T)
el =22 dxmrkol v ™™
5, mn - 3(m,k,T) (5.2)

The series (5.2) are substituted in the system. (5.1). To
reduce the resulting equations to a set of spectraly
equations it is necessary to find the series expansions .
for the types of terms appearing in (5.1). TUsing S, as
an example it can be shown that the following series are

valid

v?s,=X ¢ {} v(a-D)n S(m,n-2) + ¥/ (n+1)(0+2) S(m,n+2)
mn

- (3(2n+1) + k*m?) S(m,n)} v, (n) eimkg

nv2s,=ix {} v/(m-2)(n-Dn S(m,n-3) - vn(k?m?+}(n-2)) S(m,n-1)

mn
—/AFT (k’m?+3(n+3)) S(m,n+l) + } /(+1)(n+2)(n+3)
Stm, 8230y, éimkg (5.3)
3t - z b oikm S(m,n)p, e ™
%%* =z Z [%/n+i S(m,n+1) - 3v/n S(m,n—l)]wneimkg
m n

If we next make the decision‘that ﬁe shall considerxa low

order systen containing the compbnents
S(n-1), x(n) and &(n)

where all the components have the same value of m which,
however, - can be arbitrary, it is easy to derive the.
equations for such a system. To simplify the notations we

introduce the symbols
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F o = m?k? + 1 (n-2)

F_, = m?k? + } (2n-1)

F,o= m?k? + %n ‘ (5.4)
F, = m?k? + } (2n+1) |

F, = m?k® + } (n+2)

In the low order system we have then

imkE
VS, = - F_, S(n-1)y_ e
VS, = - Vi F_, S(n-1) y_ e'™EE (5.5)
Vixy = = Fy X(n) b o 1MKE
nV2xsx = = /0 Fy x(n)y, oMkt
V20, = - Fy o(n)y, olmkE

Noting further that F_z + 1 = Fo and F2 - 3 FO we get

finally

S = 'y x(m)

F .
- o(n) + /o-2 S(n-1) + E 4 (n) (5.6)

1 Fy

dyx(n)

a8(n-1) _ _ 5 -9 y(n) + i%k S(n-1)
-1

The system (5.6) is one of the most simple low order
systems. We shall show that in spite of its simplicity it
has a consistent energy system., For this purpose we define

the energy quantities as follows
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available potential energy ; %'%ZQ(n) @*(n)
kinetic energy of divergent motion : % T4 x(n) * Xy (n)

kinetic energy of non-divergent motion:‘% F_ls(n—l)s*(n—l)

where the asterisk denotes the complex conjugate. Using
these definitions we get from (5.6) the following energy

equations
d 11 ,
3= | 597 %% ]= %Fl(Xk®*+x*®)
%; [% F, xx*]= - % Fi(X0ut Xy 9) + /A F (8% + 8,X)
%7{ (3 F_; 8 8,) = - 3 /B F_(SXy + S*X)-
| (5.7)

which show that - % Fl(X¢* + X*'@) measures the conversion
from available potential energy to the kinetic energy of

the divergent motion while - 3 /EVFO(SX* +S*x)'measures the
conversion from the latter energy form to the kinetic energy
of the non—diVergent motion. These energy relations are
analogous to those applicable in the case of the general

shallow water equations.

Returning to the system (5.6) we derive next the frequency
equation by assuming that the time dependent amplitudes are
of the form exp [—ikm CT] when ¢ is the phase speed.

Proceeding in the normal way we arrive at the following

frequency equation

: ' : ‘ 2 2
c® + {%r-+ %r-] c? - [n o + 4 F, - 1 ]C -
- 252 212 T
1 1 T k FF_ 4 mk FF_4)
q Fq
- - =0
P K F_4

(5.8)



-923-

which is solved by numerical methods. Figure 14 and
Figure 15 show a comparison between the speeds of the
gravity waves computed from the exact frequency equation
(3.6) and from (5.8) for n = 1 and n = 5, Although there
are substantial differences it is nevertheless seen that
the highly truncated model gives phase speeds of the

correct order of magnitude.

We shall next consider some balanced models, For this
purpose we consider the various forms of the balance
equation obtained from the second equation in (5.1).

A quasi-balanced model will be one where we assume the

balance
0 = 2, *NV2S, + 38 V2o, +V o (nVS,) (5.9)
= v @ a = - °

in which the full beta effect has been included. The

corresponding equation in the low order system is-
‘ Fo o : o .
0 = = &(n) + vYn — S(n-1) - , (5.10)
F1 ’
On the other hand, a quasi-geostrophic model will be
, _

based on the equation
0 = - V2o, + nv?s, (5.11)

leading to the low order equation
r

-—2
¥y

0 =-o(n) + V& S(n-1) . (5.12)

For a quasi-balanced model we get then the following system

replacing (5.6)
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%%LE)= a’F; X(n)
T |
0 = - &(n) + vn FQ_ S(n-1) (5.13)
S p , F | N
g%%ﬂ:ll’= - /E‘F9I~X(n) + %ﬂ% S(n-1)

which leads to the phase speed

IR R N |
Cq.b. 5 o (5.14)
F—l * q?2 Fi

For a quasi-geostrophic model the equations are

de (n) _ _»
—ar o 4 Xy
I A.F;z. S :
0 = - ¢o(n) + vyn S S(n-1) " (5.15)
1 , .
dS(n-1) Ty imk
= - /m -2 x(m) + &E s(n-1)
dt F
F_1 -1
with the phase speed
C = - 1
q.8.
r , D Fg _ 3 (5.16)
-1 s
q® F2
1
We note .that Cq & and Cq p. are very close to each other
as long as Fo >>% . This means that significant

differences can occur only on the largest scale, i.e. m
and n small. Note also that the formulation (5.15) is
energetically inconsistent. The speeds derived in (5.14)
and (5.16) may be compared with the speed from a strictly
non-divergent model, i.e.

ds ik

dr F—l

S (5.17)
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leading to

1 .

(5.18)
-1
Such a comparison is made in Figures 16, 17 and 18 for the
values n = 1, 5 and 10, respectively. As expected
Cq b and Cq . differ only for n = 1 and for large ’
values of the wave length. Note also that the larger
values of n give a considerable reduction of the

retrogréssion for the large wave lengths.

Since we intend to investigate various initialisation
procedures we shall need to know the divergence implied
by the various models. It is well known that the
divergence may be calculated from the equations for a
quasi-balanced or quasi-geostrophic model. In the first

case we have

de _ .2
dr a FIX
ds ¥ i mk |
=2 = O /ﬁ'_g X + 1 s : ’ (5.119)
dr F F
-1 -1

F

s= 1 1
/i F,

Upon elimination of the time derivatives we get

X = ik e — 0 | (5.20)
, + nF2 F :

o -1
The corresponding equafions for the quasi-geostrophic case

are
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—_— 2
ar 4 F1 X
ds Fy ik | T
BomE x+ s  (5.21)
-1 -1
> - ‘<F .
S = 1— .—l @
A F

leading to the following value of

X =ik — 21 o (5.22)
qF% F_y + nFF_, e s

We shall next investigate the partioning of the initial
amplitudes in the stream function, the velocity potential
and the geopotential among the various components. From

the continuity equation we have the relation

X = - ik o (5.23)

2
a°Fq

for each value of C.

The vorticity equation leads to

F C

S = - i% FI(F_iC T @ (5.24)
for each value of C. (5.24) has been obtained using not only
the continuity equation, but also (5.23) . The two
expressions (5.23) and (5.24) lead to a total of six
relations because C has three values. In addition we have
the three relations expressing that the sum of the
amplitudes of S, X and & must be equal to the initial

amplitude, i.e.
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1 2 3 o}
X, + X+ X_ = |
17 g T g %o (5.25)
+
29 "% 0 _ 0,

When (5.23) and (5.24) are substituted in (5.25) we get
three linear inhomogeneous equations in @1,®2 and @3.
The determinant of these equations are

f _ | _ _
) D Eg 4Gy - C3)  Cy(Cq - Cp)  C4(Cy - Cp)
a7 T F Ol F_,C,+1 F_| Co+1

and the solution for @1 is

[ C C
— 1 . - 2 3 X
o= - ik (C. - C.,) S_+/n F - o
1 { 1R -
qulA { 2 3 0 o F_1 Cz+1 F—l C3+1‘
T 1 1
+ ik TR 2 C,GF _ c+1 F . C +1 ? }
q? F1 -1 72 -1 73
(5.26)

The solutions for(% and ®3 are obtained by cyclic

permutations among C 10 C., and C3 . The values of Xl"

2

X2 and X3 are obtained from (5.23) and those of S L0 82

and 83 from (5.24).

We shall investigate four different cases. The first case
will be called the geostrophic case because we shall

assume that

=

— o, , X, =0 , 4 - (5.27)
)

Ewlé



The next case is called the balanced case with the

initial condition

ot

so=l_ Lo, %, =0 (5.28)
/n F
o
The third case is a generalisation of the first because
the relation between So and @O is as expressed in (5.27),
but o

X = ik 1 ® . (5.29)
° @?F F + ni2f= O |
17 -1 1

The fourth case is a similar generalisaiton of the second
case. The relation between SO and @O is given in (5.28),
but

) o
© q2F1§1+ n E%Tgﬁ, O‘
1

- (5.30)

6. Numerical Results

The four cases mentioned in Section 5 have been investigated.
In this section we shall compare the‘results obtained from
the balanced relation without initial divergence (5.28) and
the balanced relation with the initial divergence completed
from (5.30). The results from the quasi-geostrophic
relation (5.27) without initial divergence are very similar
to those obtained from the balanced case with no divergence.
Similarly, the results based on (5.29) are quite close to
those based on (5.30).

Fig. 19a and b compare @1/®Ofor the two cases. While the
ratio remains quite small for the case of no divergence,
Fig. 19a, obtaining a maximum value of 0.06 it is even

smaller in Fig. 19b where the largest value is 0.02.



The initial divergence has thus reduced the amplitude

in the gravity mode by a large amount. The improvement

is even larger in the other gravity mode as seen from

Fig. 20 a and b. The ratio ¢4/®_ for the Rossby mode is less
than unity for both cases, but while the ratio for the

case of no divergence goes down to about 0.9 it is never
less than 0.96 when the initial divergence is added, as
illustrated in Fig. 21a and b. The distributions of S1/So,
Sz/SO and Sg/SO for the two cases are quite similar to

those for the geopotential.

For these cases we also computed the ratios X/S,,X2/S:
andf&JS ;3 - As expected we find for the two gravity modes,
i.e. X/8 and X,/8,, that the ratio is everywhere larger
than unity and becomes very large when the scale is small.
The ratio X/S; corresponding to the Rossbv mode is smaller
than unity as illustrated in Fig. 22, but attains values
as large as 0.3 on the largest scale. It is of

interest to note that the ratio Xi/Si’ i=1,2,31is
independent of the initial conditions as seen from (5.23)

and (5.24) from which we obtain

>
=
Q
+
-

"s—i=ik‘"1 i B (6.1)
i “/HFO
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7. Concluding Remarks

The main purpose of the paper is to report on the
partitioning of the initial amplitudes among gravity
waves and Rossby waves for various initial conditions

for a model based on the shallow water equations.

The geometry used is that of a plane on which the Coriolis
parameter varies linearly with the meridional coordinate.
Since this variation is kept in all terms the geometry is
different from the ordinary beta-plane. It turns out

that the eigenfunctions are of the type w exp (ikmx) ’
where'w1 is a product of a Hermite polynomlal and an. . .
exponential function. The wave speed is thus a function

of both the zonal and the meridional scale.

Section 3 considers the linear problem, and Section 4
contains some numerical examples showing that an initial
condition of no divergence in the horizontal windfield
results in rather small amplitudes in the gravity waves .

except at very large scales.

Section 5 considers the linear problem based on the
vorticity, divergence and continuity equations reduced ,

to a low order system. Four initial conditions are used

(1) geostrophic vorticity, no divergence

(ii) vorticity from the balance equation, no divergencé

(iii) geostrophic vorticity; divergence from a quasi-
geostrophic model

(iv) vorticity from the balance equation; divergence from

a quasi-balanced model.

The results from (i) and (ii) are very similar as are those
from (iii) and (iv). Section 6 contains a comparison of the

initial conditions (ii) and (iv).
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Appendix 1.

The solutions to the basic equation (3.4) are of the
type
-%z.zHen_(:z)

p (z) = e ‘ :
JAT /2T (A1.1)

where wn(z) has been normalised in such a way that

J wn(z)2 dz = 1
Z (A1.2)

The functions wn(z) are orthogonal in the sense that

.

o, mATn

o0}

{ v (2) b (2) dz = (A1.3)

1 , m=n

The function Hen(z) is a Hermite polynomial related to

the basic Hermite polynomial by the formula
—%nn Z K -
He (z) = 27° Hn[/—:-—] | (A1.4)
5 ;
For the basic polynomial we have the formula
Hn+1(z) = 27 Hn(z) - 2n Hn—l(z) (A1.5)
Using (Al.4) in (Al.5) we may easily derive the relation

Hen+1(z) = 37 Hen(z) - n Hen_l(z) (Al1.6).

Turthermore, substituting from (A1.1) into (Al1.6) we can

derive the relation

?n?l, Uh+1 (z) = zwn(z) —,fﬁdwn_l(z) (A1.7)
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which is used repeatedly in modifying the Coriolis
terms in the equations of motion.

We shall also need a formula for the differential of - -
Wn(z). Taking our starting point in

dHn(Z) TR TS .
—gz - 2n H _4(2) (A1.8)

we may first use (A1l.4) to derive that

*iwdHen(Z)

iz = n Hen_l(z} (A1.9)

Into this formula we 1ntroduce the definition of w (z) from
(Al.1). We obtain then ]

L Sy
dz

_{'ﬁ:i(25“; %Z Wh(z)i EER T TWfJWW(Alvlo)-

(A1.10) may be expressed in a 51mp1er form by using (Al 7)
for z L (z). We get finally Lo e : ,

Mn B ) - T L

The most important formulas in this section are (A1.7)
and A1.11)..
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- Appendix 2.

As seen in the text it is a necessity to calculate certain
integrals depending on triple products of the functions
wn(z). We must first be able to calculate the Hermite
polynomials. Our starting point is the fact that

Heo(z) = 1; Hel(z) = z | ‘e - (A2.1)

Additional values of Hen(z) may then be calculated from
(A1.6) or (A1.7). We find that '

(Zﬂ)_% 9"t (22_1)6_%22

He,(2) z2-1, wz(z?

1 L B
(2r) * 6 * (23_32)6—%z2

It

HeS(z) = z3- 3z, wB(z)

He4(z) z*-622+3, ¢4(z)= (2“)—% 24_%(2"‘—622 +3_)e_;ﬁZ2

.(A2.2)

- - _ 2
Hey(z) = z°- 10z7+15z,y5(2) = (2m) t1907 (25-1022+152)e" ¥Z

He6(z) =z8-15z" +4522—15,w6(z)= (2ﬂ)—%
~1 -1z?
7207%(z -15z - 15)e” %"

The interaction integral is defined as follows:

foo

! .
Vn1(2) ¥ o(2) ¥ (z)dz (A2.3)

-0

I(nl,nz,n) =

Since wn(z) is symmetric around z = 0 when n is even and
antisymmetric when n is odd it follows that I is zero

whenever n1+n2+n is odd. A non-zero value of the inter- =,
. . . . . £i° 7
action integral will consist of integrals of the form gw E

) ¢ A
Ingrts
o

J 220 722" 4y = 2 J 220 32 4y = 2 1‘fi"(2n"lyri
. on+l m a

e 0O

(A2.4)
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It is thus straightforward_to calculate the interaction
integrals. We shall calculate a few which are used in a
low-order model. They are listed below :

I (0,0,0) = 0.5157
I (2,2,2) = 0.2634
I (2,3,3) = 0.2206
I (3,3,4) = 0.1910
I = 0.0799

(2,2,4)
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‘CEX’ n=5

CTR.n=5

cEx,n=1

CTR,n=1

| 1 1 1 )

-5 } 10 15 20 25 30
L,108m

Comparison between wave speeds for n = 1 and n = 5 from the

exact frequency equation and the frequency equation for the

Fig.14

low order system for gravity waves with a positive speed.

The ordinate is the non- dimensional wave speed and the
abscissae the wave length.
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CEx,n=5

CTR,n=5

Cex,N=1

"0‘2 ‘ A ] — L ] g
5 10 15 20 25 30
L,108m

Tig.15 Comparison between wave speeds for n = 1 and n = 5 from the

exact frequency equation and the frequency equation for the

low order system for Rossby waves.
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-0-2

-0-3

_04

1 ] J

5 - 10 15 20 25 30
L,10®m R

Fig.16 Comparison between wave speeds for n = 1 for a non-divergent (N.D.),

-0-5 ] ]

a auasi-geostronhic (0.G.) and a auasi-balanced (Q.B.) model.
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Cas= Cag

- -0-3 I 1 I
5 10 15 20 25 30
L,10%m S

Fig,17 n = 5, otherwise as Fig. 16
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Cae=Cqq

_02 1 1 1 1 L ]
5 10 15 20 25 30

L,10°m
Fig.18 n = 10, otherwise as Fig. 16
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A Case Study of a Ten Day Prediction

The Effect of Arithmetic Precision on
some Meteorological Integrations
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without Reordering
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