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ABSTRACT

In this report the design of the finite difference scheme
for ECMWF's first global model using the primitive

equations in spherical co-ordinates is described. The
spatial differencing scheme is formulated in accordance with
methods which are now well established and maintains many

of the more important integral constraints satisfied by the
continuvous forms of the equation., The maintenance of these
constraints inhibits non-linear instability and ensures a
more accurate simulation of exchange and cascade processes,

The results of an adiabatic integration to three days and
an integration to ten days with a simple surface drag
formulation and convective adjustment scheme are presented,

Although not discussed in this paper, a high resolution
limited area version of the model has been designed. This
model will be used primarily for experiments with the model's
parameteyé@ation schemes for sub-grid scale phenomena.



1. . Introduction

Meteorologists are faced with a wide, though unenviable,
choice of schemes for the basic building blocks of a
numerical weather prediction model, whether it is to be

used for research or operational forecasting. For the
spatial representation the main areas of choice are grid
point schemes, pseudo-spectral or functional approaches

or Galerkin techniques using either local (for example
finite elements) or global ( for example true spectral)
basis functions. For medium range weather forecasting not
only is the accuracy of the initial data important in order
"to provide an accurate description of the evolution of the
atmosphere in the early stages of the forecast, but a proper
representation, achieved mainly through sub-grid scale '
parameterisations, of all the important physical processes
for the atmosphere is necessary to determine the development
areas of new systems not present in the initial data. In
the area of physical parameterisation the variety and levels
of sophistication are enormous. In this paper we coniine
ourselves to a description of a formulation for an adiabatic
calculation., The formulation for the diabatic part will
follow in another technical report. ‘

For the first operational model and for most of our research

for the next few years we have chosen a grid point representation
with second order difference approximations for the spatial
derivatives. The model can be used in global or hemispheric

( with a solid wall boundary condition at the equator) domains,
In addition a limited area version is available which uses

a relaxation technique described by DAVIES (1976). In the
limited area version the model's dependent variables are

relaxed towards externally specified values within a narrow
‘boundary zone. This technique provides pnssibly a better
alternative to the solid wall equatorial boundary condition for.
hemispheric integrations. In this case the model could be
relaxed within a narrow equatorial band towards a combination

of persistence and climatology or even towards values obtained
from a global forecast produced by a coarse mesh integration,

A preliminary description of the limited area version is available
in an internal report by KALLBERG (1977).

The spatial differencing scheme has been designed to preserve many
of the important integral constraints satisfied by the continuous
equaticns; conservation of mass, conservation of moisture,
conservation of potential absolute enstrophy during potential
vorticity advection by the horizontal wind field and conservation
of total energy apart from sources, sinks and boundary fluxes.
Maintenance of integral constraints is probably not strictly
necessary for short range forecasting in which the concern is
“with the accuracy of the local description. However, for longer
term integrations maintenance of these constraints is essential

in order to prevent systematic errors and to maintain the
statistical structure of the atmosphere. In particular
conservation of potential enstrophy,or enstrophy in barotropic non-
divergent flows, not only prevents non-linear instability,



ARAKAWA (1966) and SADOURNY (1975a), but it is an essential
feature of 2-dimensional barotropic flows and controls the
exchanges of energy between different scales. Failure to
conserve enstrophy in 2-dimensional non-divergent flows

leads to a spurious computational cascade of energy to small
scales resulting in an energy catastrophe, SADOURNY (1975a).
The use of ad hoc lateral diffusion schemes can control the
false numerical cascade by directly removing energy at the
small scale end of the spectrum, but a false energy cascade
into these scales in combination with excessive lateral
smoothing, which is usually necessary to stabilize schemes with
this defect, enhances the total amount of energy dissipation
and removes erroneously energy from the weather bearing
systems. It is therefore necessary to describe the dynamics
of the truncated system (BASDEVANT and SADOURNY (1975)) as
correctly as possible and to accurately describe the transfers
of energy (and enstrophy) acrcss the boundary imposed by
truncation. An essential ingredient is conservation of
enstrophy during vorticity advection by the non-divergent part
of the wind,

The vertical co-ordinate is pressure normalised by the surface
bressure, a sigma system, which allows exact satisfaction of

the kinematic boundary condition at the surface of the earth.
The model can be used with any specified irregular vertical
resolution. We have chosen to use 2 regular spatially staggered
latitude/longitude grid in the horizontal. The time-stepping
algorithm is based on the explicit leap-frog scheme together
with a spatial filtering technique to overcome the severe
stability restriction arising from the convergence of the
meridians to the poles.

In section 2 we describe the continuous equations for the model
and in sections 3 and 4 the spatial and temporal differencing
schemes are described,

In the last section, section 5, we present results of adiabatic
integrations and also of some integrations with a dry convective
adjustment scheme and g simple surface stress formulation.



2, The governing equations in sigma co-~ordinates

The simplest sigma (g) co-ordinate system has been chosen
for the first version of the model, namely the system proposed
by PHILLIPS (1957), in which

o= P/Pq

where p is pressure and pg is the pressure at the earth's
surface. The sigma co-ordinate vertical velocity is

&= do/dt

At the top of the model atmosphere (o=0) we have set 0=0
which gives the upper boundary condition

(pgd) ~0.

At the surface of the earth (o=1) we have the kinematic
boundary condition : '

(p.&) =0.
S o=1

Assuming the model atmosphere tc be a perfect gas the
hydrostatic equation can be expressed as

a¢ - :
dino RT

where R is the gas constant, which for the purpose of this
paper takes the value for dry air. A list of the variables
and constants used in this paper is given in Table 1, The
mass continuity equation (unote the density in this sigma
system is proportional to pg) is

g 4 1 a_ . e D (pot)=
i acos(@){ =y (psu) F ae(psvccs(e))}+ 5= (Pg8)=0

This continuity equation is used to determine both pg and
opg Integrating equation (6) with respect to o from~ o0=0 to o

T ot

and using the upper boundary condition (3) we obtain

o
O %s s ool 13 K 1a
ot T PE o TEos(EY ' Tn(pg)+5g(pgveos(8)) G0

On setting o =1 in (7) and using the kinematic boundary
condition. (4) we obtain the pressure tendency equation

(1)

(2).

(3).

(4).

(5)

(6).

(7).



1
dp [ 4 ' i
A | N R S (paveos(0))}do (8)
ot Oacos(@) dATS oo ++s

psé‘can now be determined from (7) and (8) by eliminating

dpg/dt. The zonal and meridional components of the momentum
equations may be written

Ju 1 1 0 . 1 ]
8% " costey “PsVe0R(0) * aoneray T OEIRT ganatey an(tnpg
« U _ ,
+ 0"56; = Fu (9)
-and .
oV 1 2 1 3 LOV_ N
-5';,6 + Zpsu + Py —5—6-(¢+E) +RT -é: ) (Q,l’lps)+0"ﬁ— Fv' (10)

where Z is the potential absol ute vorticity defined by

7 = 5L (ke BY - Sucos(e))) ) . eED

and E is the kinstic energy per unit mass given by

9

(u2+ —1 _v2cos(0) ) (12)

= cos(06)

o=

The forms of the non-adiabatic forcing on the right hand
sides of equations (9) and (10), and other eguations, are not
given in this paper, The first law of thermodynamics can be
written '

3T 111 AT, T
5T T [rm,cos(eﬂpsu 7i+ Psveos(8) 5

Ps 9 T
= aoT K
+pSO 30 - O'w]z Q (13)

where w is the pressure vertical velocity defined by

- dp d - . 9P« 1 u9 , ap
W= 2t = = : i Ps + \ S
dt = gt (Ps0) = Ps6 OCTE Hpparey (hsaveos(8)2Ds)
= pg0+03pg o

d ’ F YN
ot + acos(e){psu 'gj\"(lnps)ﬂDSVCOS(G)ﬁ(ﬁlnps)J
(14)



The continuity equation for water vapour 1is

8q . 1 [1_
5t FPS' acos(e)(Psu g§+ pgveos(p) _9)+pso_g =g. (15)
G .

3

When &, w and the non-adiabatic terms are determined,egquations
(6),(7),(8),(9),(10),(13) and (15) can be solved for the time
changes of pg, u, v, T and g and a forecast can be made.

P — e e PTESSUTE
Ps surface pressure
¢ - geopotential (g x height)
j A el temperature
u longitudinal/zonal velocity
v latitudinal/meridional velocity
q 1 - 5o : humidity mixing ratio
fp ] a(ucos(Ql . - s s
| {i ﬁcos(e)(ax %potentlal absolute vorticity
I= % (u Tcés @y'cosaﬂ) ———————— kinetic energy/unit mass
. g . . .
o= %f ——  Sigma vertlcal velocity
- dp_& N e et e
W= ST (opg) —————————— pressure vertical velocity
a= p/Pg ' vertical co-ordinate
A - - longitude
0 S latitude
f=2Qsin(8) .. (Coriolis parameter
Fy, Fr, Q,8 . non-adiabatic effects - sources/sinks
P o geopotential of the earth's surface
R - gas constant
k=R/Cp
Cp, . specific heat at constant pressure
Q . angular velocity of the earth
g e ... acceleration due to gravity
a radius of the earth.

Table 1 : LIST OF VARIABLES AND CONSTANTS
USED IN THE MODEL,



3. The spatial differencing scheme

The dependent variables are staggered in space but not in

time; the distribution of variables is illustrated in figures
la- and 1b, The horizontal wind components, temperature and

humidity mixing ratio are kept at the main levels, levels k,

and the vertical velocity &and geopotential ¢ are kept at levels

k+3. The vertical spacing of the levels is arbitrary and may.

vary from one level to another, whereas we use a regular

latitude/longitude co-ordinate system in the horizontal., The

horizontal grid is the ARAKAWA C grid and has been used by

ARAKAWA, see ARAKAWA and LAMB (1976), for general circulation

experiments and in the British Meteorological Office,
BURRIDGE (1975), for operational short range forecasting.
This grid has good dispersion properties for inertia gravity
waves, giving an accurate simulation of the geostrophic
adjustment process. In addition the C grid avoids two grid-
length computational noise in the terms governing the motion
of pure gravity waves.

We define

Ao -~g

k %k+t "9k-3o

then K
) Ao
k=1

o

k ’

where K is the number of main levels (temrerature levels),
The upper and lower boundary conditions become

(pgb)y = 0

1
2

d . =
an (pSG)K+% 0

The values of‘gk and(k+; are not independently specified but
2 .

are related through consistency relations arising from energy

(18)

(19) :

constraints imposed on the finite difference scheme., This point

will be discussed towards the end of the section,
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In order to set down the finite difference scheme adopted,
the following well known notation has been used :-

E¥x) = 3 (Al +ax-2%) )

7 ¥x,v)= T (e, vy (At 85 v A A Sy M+
FA(x+ ég,y~ y)+A(>§— éé,y— é%))

AxA ()=A (x+25)-A(x- £2)

S A(x)= €§i£§l , for constant Ax,

where Ax and 4y are grid lengths in the x and y directions
respectively.

It is convenient to define 'mass flux' variables U and V by

U:ﬁgxu

o~

and I X (20).
J

V=§gev -

The hydrostatic cguation is written

A d) ) ’ Ly N
Borng - BT (213

and a vertical summation of this equation gives
K
+fRT£(A Ano),

=k+1

~
N
[\
~

¢k+% =0

For the continuity equation and its vertically integrated forms,
equations (6), (7) and (8), we have

agi_ e g N U+6e(Vcos«D):§+%%£%5§l=O (23)
K
%kt RS (PsO)iyy = - TessH ) fst 8(Veos @)} (A 0), (4
and
3ps’ . 1 % {6,U+6,(Vcos(8))} ( A o) o
ot acos(8) §-1 A 0 g 0y (25)



The special forms of all the finite difference equations for
points in the neighbourhood of, and at, the poles are given
separately at the end of this section. The global integral
(finite difference sum) of the right hand side of equation
(25) vanishes (with appropriate polar boundary conditions)
ensuring exact conservation of the model's total mass,., The
momentum equations are differenced as (leaving the non-
adiabatic terms in symbolic form)

=A
du 1 1 -0 RT +
2t Cos(e)[jZVcosGﬂ] +acos«ﬂék(¢+E)+acosG»§*2npS)
o
s+ LB 2 Ag-o._'u ~F_ (26)
Ps c
v 1 -0 RO .
= +[2U] + 389 (¢7+E) +7=6, (Lnpg) +
) o
L B0 BV p (27)
pS AO'U
with ‘
-7 1 ey}
= 1 2 e >3
K z(u + cos®) veecos(@® ) (28)
and 1
7 = -“~—~—*-jxe{afCOS¢»+5x‘F-Se (ucos@®)) } - (29)

psacos(e)

We have chosen to work with two finite difference schemes for the
rotation terms [ZVcos(®] and [ZU]. The first conserves both energy
and potential absolute enstrophy, (pgZ?),and for non-divergent
barotropic flow may be reduced to the energy/enstrophy conserving
Jacobian designed by ARAKAWA(1966). The second conserves potential
absolute enstrophy (pSZZ) but not energy. The energy/enstrophy
conserving scheme we have chosen cannot easily be expressed in
terms of the operators introduced above; instead we use a
geometric description (SADOURNY 1975b) in which the rotation

terms are written:



[ZVcos(®) ] 00=

3 [(Vcos(e) )
+(Vecos(®)) _

+(Veos(9) _

+{(Vcos®))

i
2

2

(Veos(®) ,

1
2

1
2

1
2

1
T2

[

1
—2

(Veos ®),

1
)y 2

i

-
7
'

AN

e Y ———

Z

[N S

L,

(30)
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‘For the enstrophy conserving scheme we have chosen

[ ZVcos® ] chsaﬂxy 24 (32)

and

[ zu ] =T 7 | (33)

The thermodynamic equation is used in the advective form

——e ]
_3_'_1'_' J:__ - _.1 A i 2N} _E..b_.—'q_,__QA T _ -
at+ps 560500 (UGKT + Vcos@,Sebe + .
o
_E§B£}= Q (34)
o | v _ 4
with
kTw|_ KT G5P5 9 K —A A -
L= B S : - 1 7
[: 0'} 0( ot * pgo ) 4acos(e) tur gk(lrps) * Veos©O)T 66
(2npg)} . (25)
Equation (34) may be rewritten in flux form using the finite
difference continuity equation (23) and the finite difference
rule '
.—-X _,____,._____.X . ’ .
= 24
AX(AB ) AAXB + BAXA ‘ (36).
The form chosen for the w term, relation (35), ensures that trans-
formations between kinetic energy and total potential energy
cancel provided 1/oc is defined by
1 “Aglnc
o A,o (37)

Equation (37) is the consistency requirement relating values of
o at temperature levels (levels k ) to those at (psé ) levels
(levels k+%). A relation such as (37) is not strictly necessary
for energy conservation since energy conservation is guaranteed
when kKT din the first term on the right hand side of (35) is

o K. Ago
> Bgx
replaced by R g0

K 9¢,_ KT A .
R BO(— 5 ), and in this case we have

a finite difference representation for



~14-

[ KT 1 Asdlodp .d. S
i_ o ] A o| 9t & PsO +acos@D
b ag
= A — 9
{ UT SA(QHPS) + Vcos@YPSéans) ); (38)

Relation (35) subject to (37) is of this form.

The moisture equation is

g . 1 (1 ———— 5 'e] D0 A chz
5 + ps{igagféle6k q + Jcosﬁﬂﬁe q‘r_szggﬂ_ S (39)

which can be rewritten in a flux form and consequently moisture
is conserved in the absence of sources and Sinks,

3.1 Modification of the spatial differencing near and at the poles

We have chosen to keep temperatures at the poles as shown in
figures 2a, and 2b. Po(=pg p) at the poles changes as a result
of the meridional mass flux’V at all of the points on the
latitude circle where the meridional velocity component v is
carried. For the poles equation (23) is modified to give

IPs,p

ot

IX :
+(SIGN) 284 T (Veos@ ), . +Aa®D, - o (40)
€ i=1- pb-z,1 A o

Where IX is the number of points on a latitude circle,

= 1 L AByy.adb
e = (IX) (3aAXcos( 5 5 ))(2 (41)
is the area represented by a polar grid point, and
SIGN = -~ 1 for the North pole
(42).
SIGN = + 1 for the South pole
0Pg .
The polar surface pressure tendency w5, P and vertical
velocity (pSc'J)p can be determined from vertical integrals
(finite difference sums) of (40), leading to the two equations
Gk+13p ) % ahA
2085, 4 I(p 6)} =- : = ) (Veo: V) .
ot [ 5 pk_*_% 2=1 (SIGN) € i:l(X(-’OS(e, )p—-%,l (AUU)Q;
4 | (43)
an . . v
- 9P h[ oy IX :
—p = — 7 CA
—t P %,(SIGN) — 1 (Xcos(e))p_%’lJC ¥ (44)

= i=1



e .
i Figure 2a

Distribution of variables near and
at the North pole.

(latitude / longitude grid).

(p+3) =— 2 ’ Lz - =L imirror value:

(») U ———(T,Dg,q) U—(T,pg,q)—————U = INorth pole.

|80/2

;Figure 2b

Distribution of variables near and
at the North pole.




~16-

The finite difference equation(27), the v equation, may

- be used to calculate Vp 1 3 provided 'mirror values'
-1,

Z_ .1 :,; the polar zonal mass flux. U and kinetic energy

ptz,1i+3, ’ ’ )

/unit mass Ep are defined. We have chosen

Spry,i+t T Ppoy i+d : (45)
and L . IX o
- 1 1 1 2 _n_ ve
"7 TX o042 L 0,0 COS{ 2 2J (46)
beos| B~ 5| i=

(NB. 3% cos{—%'—'ég] is the 'cos(d)' for the polar cap).

The zonal mass flux UD i at the poles is not a true prognostic
R ]

variable and is determined from finite difference representations
of the polar boundary conditions

aU o éﬂ.;& . N
=5t 55 (Vecos(®)) =5 [ = (Vecos(® ) dA‘A |
. . 0 i
27 . | o=t %, (47)
Udx = 0
e}
J
which take the forms
S alf -
Up’i+%—Up’i_%}—§— + (SIGN)Vp_%,icos(ep_%)aAl =
; , IX
=(SIGN)-ﬁ§- §=1 Vp_%’icog (ep_%) N _ (48)
and %X U =0
© §=1  P,it3i
respectively,

The choice of the mirror values of 7 'beyond' the poles

(relation (45)) ensures conservation of potential absolute
vorticity and potential absolute enstrophy by both forms chosen
to represent the rotation terms, but energy conservation for the
energy/enstrophy conserving scheme, (30) and (31), is limited

by boundary effects at the poles resulting in boundary contributions
from the rotation terms. These boundary terms are in fact very
small and vanish for Zp_% 143 independent of i (Z constant on the
'boundary).A If we let the poles be v points ( Z points, with

Z = constant on the boundaries) with v at the poles restricted
to a zonal wave number one component and allow cross-—polar
differencing where necessary, the energy/enstrophy conserving
scheme, (30)and (31), can be designed to be Strictly energy and
potential absolute enstrophy conserving. .



17

The equations for T_ and qpiare

2T 1 3 ‘ IX ' )

P aA 8
— SIGN cOSs .) VvV .T R
9 P {( ) ( P‘% Z ]( P—%,l P-%,l)

' (0}
._IL(pSCOS)p A,:PD - [EEAD__]} =Q

D2, » 5 (49)
o .
and
X
3dp {(SIGN) 224 cos(e,_y) L (V,_, iag_; )
5T Pg TE = 23 *
(Ps6)plsdn O? | '
+ 0280y 1 = -
Ao J= % | s . (59)
(e} ‘ .
with
kTw| _ 1 ACIQ]Q oaPs a9 Ko 1
—=| = -5 P(0Sip | + — o— X
o 1y p bgo [ ot ] azc086%_%) IX
X z 70 iV 1 sc0s(8 1) |
juq b-3,ip-1,i p-3’ x{84 (4npg)}

p-%,1 (51)

with or without the constraint (37).

The basically second order centred spatial differencing
scheme described in this section endows the model with the
following properties, subject only to time truncation, non-
adiabatic effects and boundary terms:- '

(a) The total mass of the model is conserved.

(b) Kinetic energy (for scheme 31 and 32) pSTz,quz, moisture

g and total potential energy are individually conserved
‘under advective processes.

(c) Potential absolute enstrophy, pSZZ, and potential vorticity
. are conserved by the horizontal advection terms,

(d) The total energy is conserved with the correct conversion
between kinetic and total potential energy.



4;"The'time—sfepping scheme

Let x° be a vector whose components are all the grid
point values of the model's dependent variables, then
we may formally write

9% 4 Ax + Sx =0 (52)

3t t AX Sx

where A and S are non-linear finite difference operators
represénting the adiabatic terms in the governing equations

( the terms set out in the last section) and the non-adiabatic
terms respectively. Our present algorithm is based on a leap~-
frog scheme for the dynamics and a forward step for the "
remaining terms (some processes such as vertical diffusion
may have to be included using implicit techniques to prevent
numerical instability). The integration scheme is

X (T+HAE)=X (t-At)-20tAx (t) -2AtSx(t-At) (53)

where the overbar denotes a linear time-filtering operator such
that

X (t~At)%g(t~At)+u(g(t~2At)-2x(t»At)+x(t)) (54)

a typical value of o being 0,005, The broperties of this

filter are well kncwn, ASSELIN (1972), and its purpose is to
inhibit the growth of the spurious computational mode associated
with the leap-frog scheme,

In order to overcome the severe stability restrictions arising
from the convergence of the meridians to the poles, a
latitudinally dependent spatial filtering operator, see ARAKAWA
and LAMB (1976), is applied either selectively or to all the
terms in the finite difference equations, Our filter can be
formally expressed as the finite convolution operator

E=gt Ao (55)
where ¢ is é finite Fourier transform along a line of latitude,
o™t its inverse and

A =A(8) =aiag(hy(8) ,—-m, @
where Ay ® is the reduction factor for the nth Fourier mode

of the term being filtered. Tor linear systems this filter

when applied to all terms (total tendency filtering) reduces the
phase speeds of wave solutions of the equations. The filtering
scheme has been designed so that the stability criterion for the
finite difference scheme can be based on the east-west grid

length at some fixed latitude, 89 N, and the filter is then

applied polewards of 69 N and 62 S in the Northern and Southern
hemispheres respective?ya Experimgnts with barotropic models

using a number of filtering techniques will be described in another
‘technical report.
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5. Results

The integrations described in this section are based on
initial data for 00 GMT 1st March 19865, The initial data
set was constructed by interpolation from data on the GFDL
‘N24 modified Kurihara grid, MIYAKODA (1974).

Our integrations which included topography were made with
the global energy/enstrophy scheme, (30) and (31) with the
following resolution:- :

o o o]
AK[1§%~]= A8 1180 J =[ 90 } = 3.750(approximately N24)

T 24

nine temperature levels ( the GIDL levels ) with

2
= = -2 = —_——
O Sy (3 usk) ’k 1, ‘,9
S = Py 18
and .
Orpr = Spp1 (3-2s, .4)
k+y o Tkt E*3'% = 0,-——=, 9
Siey = 2K/18
and-with the relation (38) for [ng 1.

The time-step was 5 minutes and no time smoothing (a = 0) or
lateral diffusion was used., The spatial filter (53) was used

e B Q O . LN n . \AT 'C .
for /@4(1%9—)/> 450 With the reduction factors, ARAKAWA and
LAMB (1976), defined as
' . _ ( 3
A - cos@9 1 . .| cos() 1
n(®) = Sos(aso)  Eim Qgi] 1T} Cos(4%o) sin AL X
o { 2 )
R : r 0. )
-1 it cos®@) 1nAA' 2
cos(459)sin —5—
\ J

The model's initial data is illustrated in figures (3)

and (4) by 500 mb and 1000 mb., height charts; NMC analyses

for this time are shown in figures (5) and (6). An adiabatic
forecast to 72 hours together with NMC analyses are illustrated
(500 mb and 1000 mb height charts) in figures (7) to (18).

It is not our intention to present a detailed analysis of the
model's forecasting skill in this paper; its performance with

the complete GFDL physical parameterisation scheme is demonstrated
in a forthcoming technical report by GAUNTLETT et al (1977).

The general flow pattern of the 500 mb forecasts compares well



with the analyses though the intensities of the individual
features are quite different. At 1600 mb the systems are
much too intense, typical of integrations with no .surface
friction., The wind field at the lowest levels in the model
grew rapidly (witHin the first 12 hours) to about twice
the original values accompanied by the intensification of
surface features. The energy loss in this adiabatic
experiment was less than 5 x 10-7 % per time-step., By 72
hours many grid points, particularly over topography, have
become seriously statically unstable and the integration
became unstable before four days.

A 10 day forecast which included 2 simple frictional drag
scheme at the surface of the earth and a dry convective
adjustment scheme is illustrated in figures (19) to (24).
The surface stress for this integration was :

=g [lvm,rvelv]

‘ A
with  |V|=/G7 + 2 575555°
~ cos(0)
and CD (the non-dimensional drag coefficient) = 2 x 107°,

The major difference between the 72 hour forecasts, figures
(11),(17),(20) and (23) is the large difference in the
magnitude of the low level winds and the intensity of the
surface features. The 10 day forecast has been included to
demonstrate the stability of the model in the absence of

ad hoc lateral smoothing schemes, though it is obvious from
the 10 day 1000 mb chart, figure (24), there is a significant
amount of noise at the limits of resolution of the model,

As mentioned above the next stage in the development of this
model is to combine the adiabatic scheme of sections 3 and 4
with the GFDL physical parameterisation package and to evaluate
its forecasting potential cempared with that of other models
available at ECMWF.
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