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1. Introduction

Discrete Poisson and Helmholtz equations arise frequently
in connection with gridpoint numerical models of the
atmosphere; for example in decomposing a wind field into
its rotational and divergent components, in solving the
balance equation, and in semi-~implicit time integration
schemes.

The use of direct methods for solving the discrete Poisson
equation ( or simple Helmholtz equation ) over a rectangular
region is well established; a comprehensive review of these
methods was presented recently by Temperton (1977). With a
little modification, they can be apnlied to a latitude-longitude
grid on the sphere (Swarztrauber,1974). If we denote the
number of operations required to obtain a solution on a
rectangular N x M grid by 6( N,M), then for the simplest
methods, based on either Fourier analysis or block-cyclic
reduction, 6(N,M) is asymptotically proporticnal to NM log.N.
(In the most recently developed form of block-cyclic reducfion
(Schumann and Sweet,1976), this is true for arbitrary N,

i.e., N need not be a power of 2 ). Swarztrauber (1976)

and Temperton (1977) have shown that TFourier analysis and
block-cyclic reduction can be combined to give an operation
count 6(N,M) asymptotically proportional to N2 10%3(1032N)
(for M=N), and in fact for practicable grid sizes

O (N,M) is effectively pronortional to NM.

In many cases, it would be convenient to extend direct methods
to non-~rectangular regions; for example, a number of overational
numerical weather prediction models are based on a stereographic
map projection, using an octagonal domain covering most of a
hemisphere. Buzbee et al. (1971) showed that these direct
methoeds could also be used to solve the giscrete Poisson

(or Helmholtz) equation over an irregular region, by embedding
it in a rectangle; a typical example is shown in Fig. 1.

Suppose that the dimensions of the rectangular grid are N x M,
and that the discrete Poisson equaticn can be solved over the
rectangle in 0(N,M) operations. Suppose also that there are

p gridpoints within the interior of the rectangle which form
part of the boundary of the embedded irregular region. The
solution procedure falls into two parts : a preprocessing
phase which is independent of the right-hand side of the
equation (and thus need only be performed once when the equation
has to be solved a number of times with different right~hand
sides ), and the solution phase itself. The algorithm given

by Buzbee et al. (1971) required p 6(N,M) + O (p®) operations
for the preprocessing phase and 2 0 (N,M) + 2p° operations

for the solution phase. The development of the algorithm was
given without reference to any specific direct method for the
rectangular region.




Later, Buzbee and Dorr (1974 showed that the operation
count for the preprocessing phase could be reduced to O
(pNM + p¥) by careful application of the Fourier analysis
method. The solution phase still required 2 8(N,M)

+ 2p” operations, i.e. more than twice as many as for the
corresponding rectangular problem.

In this paper, it is shown that the strategy used by Buzbee
and Dorr to reduce the operation count for the preprocessing
phase can be extended to the solution phase. We derive an-
algorithm whose operation count for each solution is not
much greater than § (N,M), showing that direct methods can
handle irregular regions almost as efficiently as rectangles.
As a bonus, the storage requirement is also reduced by
approximately MN in comparison with the algorithm of Buzbee
et al.

2. Development of a fast embedding algorithm

Some detailed aspects of the embedding procedure are discussed
by Buzbee et al. (1971); for convenience they are reviewed
briefly here.

Let the dimensions of the rectangular grid be N x M. Denote

the boundary of the rectangle by 3R, and the discrete interior

(i, \., the set of interior gr}dp@lnbb) of the rectangle by Rl

Rh contains n = (N-1) (M-1) gridpoints.

Denote the boundary of the embedded irregular region ¢ by 3Q,

and its discrete interior by Qh' Let p be the number of points

in 3QMR,.. The embedded irregilar region may be a simple

domain with a non~rectangular shape, as in Fig. 1, or it may be the

rectangle itself with specified boundary conditions at a

number of interior points, as in Fig. 2; for the potential

problem {(Hockney, 1970) the ]after case corresponds to the presence
of internal electrodes

For simplicity we assume here that the boundary conditions on
3@ are Dirichlet, so that the probklem we have to solve is
V2w=fith _ ,
. e e 1
Y = g on 3Q } (1)

The functions f and g can be extended arbitrarily to the
whole rectangle, e.g. by setting £ = o in R -(3QMNR, )
and g = 0 on 9R- (3Q M 3R). The probiem (1 then becoqbs

vV p = f in R - (3QNRy)

g on 9@ v SR

Fooooao.. (2)

=
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The discrete Poisson eguation over the rectangle can be
written as Bx =y , where B is an n x n wmatrix. Without
loss of generality, we can assume that the points of the
rectangular mesh are ordered in such a way that the first
p points are those which lie in aQr\Rh.

Let B be partitioned in the form

B = Bl

By

where B;1 and B, are pxn and (n-p)xn matrices respectively.

The problem (29 can then be written as
Ax =y (3)
where
p =M
B

and Al is a pxn matrix of the form

Al = (ID o).
The first p components of y in Eg. (3) correspond to the
boundary values g on 3QM R, ; the remaining components
correspond to the function £, extended to R, - (3QmR.),
and modified as necessary at points adjacent to QM B’

to accomnodate nonhomogeneous boundary conditions. After
solving the system (3), the components of x corresponding
to points outside Q may be discarded. v

The preprocessing phase consists of determining the pxp
capacitance matrix C = A_B-1 Ag , and computing either

the explicit inverse or a triafigular factorization of C

to be stored for use during the solution phase. An efficient
method for determining C was given by Buzbee znd Dorr

(1974), and this aspect will not be considered further

here.

The solution phase can be divided into the following steps:

(1) Given the problem represented by Eq.(1), extend the
functions f and g to the whole rectangle, as described above.
(2) Solve the discrete Poisson equation Bw = y over the
rectangle, ¥ -

(3) Solve Cv = Al(y - w); this system only involves the p
points of 3Q F&Rh,Tw -

(4) BSet z =y +7A, v (i.e. modify the original right-~hand
side at the points of 3Q M R,.) .

(5) Solve the discrete PoisSon equation By = z. The
vector x is the required solution in Qh, and matches the
specified boundary conditions on BQF\Rh»
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Notice that in step (2) the solution vector w cannot
overwrite the input vector y, since the latter is required
again in step (4).

The above procedure is precisely that outlined by Buzbee

et al. (1971) and Buzbee and Dorr (1874). We now consider
the application in steps (2) and (5) of a specific simple
method for the solution of the discrete Poisson eguation over
a rectangle, namely the "basic FFT" method. To make the
discussion more concrete, let the embedded irregular region
be an octagon of the form illugtrated in Fig, 1. The octagon
is obtained by removing four triangular corners of the
rectangle; with the notation in Fig. 1, p = 4 (q-1).

For simplicity, we assume that the mesh length is 1.

Let S be the matrix representation of a Fourier sine transform;
thus S is a square matrix of order (N-1) with elements given
by 8 = (s..), where s, . = (2/N) sin (ij m/N). With this
scaling, S¥1 = (w/2) & 1Let A, = 2 cos (k m/N) ~ 4, and
denote by T, the tridiagonal mitrix of order (M~1) with
constant didgonal term A and 1's on the sub- and super-
diagonals,

{}
In order to keep the notation compact in the following
discussion, we adopt the following definitions
For a variable x defined at gridpoints, let

L3

e
(g0 )
X .
X, = 277
~ ]
*N-1,J .
Denote the Fourier sine transform of x. by x,, i.e. X, = Sx, ,
with components defined by ~dJ ~J ~d ~d
(5., )
Xe s
_ 2°J
X, =
2] .

\\XNmi, ‘3/ ,

where the first subscript of each component refers to the
wavenumber Ik, fe will also wish to reorder the variables in
Fourier space and define a vector of values with a common
wavenumber
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where the second subscript refers to the row number J.

Step (2) can now be broken down into three smaller steps:
(2a) Perform a_Fourier sine transform on each row j,
i.e. calculate y, = Sy., 1 j< M-1,

(2b) For each Wavenumﬁer k ( 1< k «N~1) , solve the
tridiagonal system T1 ¥ Yy

2¢) Perform an inverse Fourier sine transform on each row
j, i.e. calculate y, = g~1 Wi, 1 <3 M-l

Step (5) can be broken down in exactly the same way, with
X replacing w and z replacing v.

For this basic method of solving the discrete Poisson
equation over a rectangle, the operation count given by
Temperton (1977) is 6(N,M) = (3 log, N + 7) NM additions

and (2 log,N + 1) NM mh1+ip1ication§, assuming that the
tridiagonal systems are solved by Gaussian elimination using
precalculated coefficients. ,icnq (2) and (5) each regquire

6 (N,M) operations, while step (3) requires p? additions and
p? multiplications, giving an oneratloﬂ count for the whole
algorithm of (8 1og N + 14) NM + p® additions and

(4 log, N + 2) NM +2p2 multiplications.
2

A cursory examination of this algorithm shows that some of
the computation is redundant. TFor example, z. in step (5)
differs from y. in step (2) only on those rows containin 1920

one or more ofJthe p points in 8Q™R,. Thus, for the example
in Fig. 1, z. = y. ( and hence z, = %j ) for q <js<M-q,

and so, provided ~J ". can be sto%ed step (5a) need not be
carrled out for thesé values of j.

A more searching analysis shows that nearly half the computation
is redundant. Consider first step (3); in order to perform

this step we need the components of the vector w only at the

p points in 3Q M R, . These can be obtained more efficiently

as follows : _perform steps (1), (2a) and (2b) above toq
obtain w,, 1 > j S M-1, Then, for each point (i,j) in QAR ,
w. . 1is given directly by :

i,
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N-1 3 ’
w. . = % w. . sin (ikw/N) ... 4
537 L s (ikm /N) (4)
Exploiting the symmetry of the sine function, Eg. (4)
beccmes
N/2--1
- g - ) ] .
w, . = W, L.—{(=1)"w )sin (ikw /N
i3 7L (e Dy pisin (kr/N)
+ - . -] ..
WN/Z,j sin (in/2) ... (5)

Sc, for each ( i,j) in 3QmR,_, W, can be calculated
in approximately N additions‘and‘JN/Z multiplications.
Direct use of Eq. (4) was suggested by Buzbee and Dorr
(1974) in their application of the capacitance matrix
method to the discrete biharmonic equation.

The modified form of step (2c) thus requires pN additions
and pN/2 multiplications, in comparison with the original
(1.5 log?N + 2.5) NM additions and (log, N-0.,5) NM
multiplications., Moreover, for the octigonal region of
Fig. 1, 2f ( i,3) is in SQr\Rh, then so is (N-i,j) and

N/ 21 . .
N . I e - (';xvr e (o % A S". '1;,
Vieig T 7L DT Gy =G N ) sin(kn/D)
N/2 - .
- (~1) Wy/g, 4 Sin (iv/2).... (6)

Comparison of Eags. (5) and (6) shows that w. ., and Wi 4

can be computed together in a total of N additions and’’Y

N/2 multiplications, further reducing the operation count

for the modified form of step (2¢) to pN/2 additions and pN/4
multiplicaticons,

Having obtained w., . for all (i,j) in 3QnNR,_, steps (3)

N 1.7 - ’ h
and (4) can proceedas before. We turn now to the
modifications required in step (5). In step (Ha) we
calculate z, = Sz,, 1 £<j<M-1. It has already been pointed
out that, if row ﬁ contains no points in 9Q m R, , then
z, =y, and z, = y,, which has already been detérmined in
step (2a)., =Y “J" Suppose now that row j contains one of
the p points in sQ M R,_, namely ( i,j). Then gj differs

from y. only at this point. et ., = v.%e..
Y3 v ! 45 T X375
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Ve have

z, = Sz, = 8(yv, + e,) =y, + &,
223 T3 TSy T Yyt Sy

where e is the Fourier sine transform of a vector with

only ont nonzerc component:; hence

Zk,j z= yk,j + (2/N>ei,j sin (ik 7/N).... (7)
Again, we can exploit the symmetrieg of the sine function to
obtain

- _ = C (oMY (o1t in(ik .

ZNmk,j yN~k,j (2/N) (-1) ei,j sin{ik/N).. (83

If row j contains more than one point in beﬁhh then
Eq. (7) is replaced by

= hid - - \T .
2y 5 Vi, 3 + (Z/N)g e; 5 sin (ik W/R),.,. (9)

where the sum is taken over values of i such that (i1,3)

is in 2QmR,; and similarly for Eg. (8). This modified
form of step (5a) requires pN additione and pN/2 multipli-
cations, the same as for the modified form of step (2¢).

In the case of the octagon illustrated in Fig. 1, we
can again exploit the fact that if (i,j) is in 3QnR
so is (N-i,j). Eg. (9) becomes

n then

7 +(2/N) (e 4 - (-1)¥ ey_y 4) Sin(ikn/N),

kK,i  Vk,j

and similarly for EV K. i and the operation count is reduced
to pN/2 additions and pN /4 multiplications.

Steps (8b) and (5¢) then proceed as before.

Although we have now saved a considerable amount of
computation in comparison with the original algorithm, we
have not reduced the storage reguirements; the vectors

yj, 1 <j<M-1, must be saved from step (2a) as they are

required again in step (Ha). A further modification reduces
the storage requirements for the arrays from 2NM + p to
NM + p + M.
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Consider step (5b), in which we solve the tridiagonal
systems ’

%= 00, . 1< k<N-1 (10)
N p — o - . 3 1 Mj-—" — e
Now 2, = Vi + € and we already have Tk Ve © Vi
from step (2b). Eg. (10) can thus be written

= _ = o ol=
S T W Tk k.
Step (5a) can be modified to obtain e, . rather than

Zy ;3 ; for example Eq. (9) is replaced’Yby

- — > ‘2 TN
ey 4 (2/N) § e; 4 sin (ik T/NY. ... (11)

where again the sum is taken over values of i such that
(i,3) i=s in BQ!\Rh.

With this modification, the vectors y. need no longer
be retained, and by performing steps 3(53) and (bb) for
each wavenumber k before proceeding to wavenumber (k+1),
the storage requirement is reduced.

The fast embedding algorithm thus consists of the
following steps.

(1) Extend the functions T and g to the whole rectangle
to define the vectoxr y. Save the components of y
corresponding to the p points of BQF\Rh in a work area.

(2a) Perform a Fourier sine transform on each row
J, i.e. calculate vj = Syj, 1<jgM~1.

D
~

(2b) For_each wavenumber k, 1<k <N-1, solve the tridiagonal
system fk%x = Xk .

(2¢) For each point (i,j) in 3QmR,_, calculate Wj . using
Eq. (4), and overwrite the work arez with values 59
(yi 3 - 3 Jat these points, thus defining the vector

3 bl

it

{3) BSolve Cv A, (y—-w).

(4) Define e = Afy (i.e., the components of e are the
£ v for (i,j) in BQF\Rh, and zero elsewhere).

i

same as those of



It is convenient to multiply the components by (2/N)
at this point.

(5a,5b) For each wavenumber k, calculate e, using Eqg.(11)
and then calculate x, = w§ + ¢£ §K. An ”do?t;opaj work
area of length M is TYequ Yed. } For irregular regions
with symmetry about i = N/2, it is more efficient fo
consider wavenumbers k and (N-k) tcgether, since for
example in the octagon of Flg 1e = - (-1)t ¢, .,

where (i,3) is in 3QNR, . N-k,J X,

L

(5¢) Perform an inverse Fourier sine transform on each

row j, i.e. calculate X, = S87°%,, 1<j<HM-1. The vector
X is the required solufion. ~d

In comparison with the original algorithm, use of the

fast embedding proceaure reduces the operation count irom
(6 log,N + 14) NM + p*“ additions and (4 1ogﬁN+2) NM + p?
multiplications to (3 log, N + 10) NM + pN £ p? additions
and (2 logy N + 3) NM + pV+p mu“tlpiicatlons while the
storage requ1roment for the arrays is reduced from 2NM + p
to NM + M + p. Instead of having to solve the Poisson
equation over the rectangle twice, the only O (NM) part of
the computation which as to be repeated is the solution of
(N-1) tridiagonal systems of order (M-1). TFor typical
values p = N = M = 64, the total number of floating-point
operations is reduced by cover 40%.

The development of the fast embedding algorithm aros

from a requirement to solve the discrete Poisson eq1at1on
over an octagon with N = M = 60, ¢ = 18 (p= 68). :
Programs to solve the eguation over 60 x 60 square (using
the basic FFT method), and over the embedded cctagon (using
the algorithm spove), were written in Assembler language
and run on an IBM 360/195 at the U.K., Meteorological foicgm
The respective CPU times were : for the square, 3.63 x 107°
seconds; for the octagon, 4.41 x 1072 seconds. Experiments
were carried out to compare the computed solutions with true
solutions consisting of random numbers in the range

-1 <x i £1: the mean maximum error was found to be

9,8 x- 0“5 for both regions.

3. Combining fast embedding with a fast solver

At this juncture the following objection may be raised:

the development of the fast embedding algorithm of Section 2
depends on the use of the'basic FFT" method for solving
Poisson's equation over the rectangle. In this case, the
use of fast embedding reduces the operation count by nearly
half. However, a similar reduction could be obtained by using
the basic embedding method of Buzbee et al., (1971) together
with a faster Poisson-golver on the rectangle. Consider for
example the unstabilized FACR(1) algorithm of Hockney (1965,
1970); the operation count given for this algorithm by




10

Temperton (1877) is (1.5 log N+ 7.5) NM additicns and

(log, N + 2) NM multiplicatidns for the rectangle, again
assuming that the tridiagonal systems are solved by

Gaussian elimination using precomputed coefficients.
Combining basic embedding with two solutions over the
rectangle using this algorithm would therefore reguire a
total of ( 3 log, N + 15) NM + p® additions and

(2 locg, N + 4 ) 8M + p? multiplications, which is similar

to the“operation count given in Section 2 for the combination
of fast embedding and basic Poisson-solver. Similar
operation counts would again be obtained by combining basic
embedding with either one of two alternative variants of

the FACR (1) algorithm introduced by Temperton (1977), in
which the original set of equations for all (i,j) is reduced
to a new set for i1 even (cyelic reduction on i) or for

(1 + j) even ( "diagonal' cyclic reduction ).

Applying the same principles as in Section 2, the fast
embedding procedure can in fact be combined with any of
these fast Poisson-solvers. The details will not be given
here, since they depend on which fast solver is used.

The choice of the most convenient algorithm depends on the
position of the points (i,3) in 3QMR,.. If j is even for
all such (i,j), as in Fig. 2, then Hocknev's FACR (1)
algorithm (with cyclic reduction on j) is the most suitable;
it i1 is even for all such (i,J), as in Fig. 4, then the
algorithm using cyclic reduction on i should be used;

if ( i+j) is even for all such (i,3j), as in Fig. i if N,M
and ¢ are even, then "diagonal' cyclic reduction is the most
convenient,

The latter algorithm can also be used in the most general
case, since if the solution w, . in step (2¢) above is
required at a point (i,J) Witﬁ’%i+j) odd, it can easily be
obtained from the solution at the neighbouring points

( 1*1,3) and (i, J 1) since these points are all even.
In Hockney's FACR (1) algorithm, on the other hand, the
solution at a single point (i,3) with j odd can only be
found by solving a tridiagonal system, the right-hand side
of which depends on the solution at (i,j + 1) and

(i, j - 1 ) for all i,

For the octagon problem with N = M = 60, q = 18, the
approximate number of floating-point operations per point is
given in Table 1, for basic and fast embedding combined with
both basic and fast Poisson-solvers. The fast Poisson~-solver
in this case uses one preliminary step of "diagonal" cyelic
reduction,

The amount of computation required to obtain the solution over
the octagon, combining fast embedding with a fest Poisson-
gsolver, is approximately equal to the amount reguired for just
2 complete sweeps of the iterative ADI method.
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Table 1

Number of floating~point operations per point for
octagon probliem with N = M = 60, g = 18,

Poisson--solver | embedding ! additions [ multiplications

basic basic 53 31
basic fast 30.5 18.5
fast basic 34,5 17.5
fast. fast 20,5 12

4, Further applications

The preceding sections have demonstrated the power of FFI--
based Poisson-solvers for appiications to irregular regions,
especially when combined with the fast cmbedding algorithm.
Buzbee et al, (1971) remark that "embedding the region in

a rectangie may introduce an excessively large number of
additional unknowns that are not necessary to the solution
of the original problem';an example might be the L~shaped
region of Fig. 3. However, by noting that the sine trans-
forms on the lines containing onliy a few points in Qh can
rapidly be performed directly, using only elementary symmetries
of the sine function rather than the FFT, an efficient
algorithm may still be constructed. It is worth noting that
block-cyclic reduction (Buneman's algorithm) appears to be
much less flexible in this respect.

Another application of the embedding procedure which may be
useful is in solving the discrete Poisson equation over
simple rectangular regions whose dimensions are particularly
inconvenient for the FFT. Suppose for example that we have
to solve Poisson's equation on an N x M rectangle with

N =M= 62, Hockney's FACR (1) algorithm would reguire sine
transforms on 62 points; using the procedures of Cooley,
Lewis and Welch (1970) to reduce these to periodic trans-
forms on 31 complex points, and the method due to Singleton
(1969) for performing these efficiently, the operation count
for the Poisson-solver is approximately 27 additions and
18.5 multiplications per point, compared with 16,5 additions
and 8 multiplications for a similar problem with N = 64,




Although these figures may be taken as an indication

that the Fourier transform method is reasonably efficient
even for awkward values of N, a faster algorithm can be
obtained by embedding the N = 62 rectangle in a slightly
larger one with N = 64 (see Fig.4), and combining the fast
embedding procedure with the variant of the FACR (1)
algorithm which uses cyclic reduction on i. The resu ting
operaticn count is approximately 20 additions and 11.5
multiplications per point.

Recent results (Schumann and Sweet, 1976) suggest that
block-cyclic reduction can be applied just as efficiently
for arbitrary N as for N a power of 2; however, the
combination of fast embedding with fast FFT-based Poisson-—
solvers may be quite competitive.
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