European Centre
for Medium Range

e
w Weather Forecasts

Users Guide for the G.F.D.L.. Model

November 1976

Centre Européen pour les Prévisions Météorologiques
a Moyen Terme

Europdisches Zentrum Fir Mittelfristige Wettervorhersagen

USERS' GUIDE OF THE GFDL MODEL AT THE EUROPEAN CENTRE FOR
MEDIUM RANGE WEATHER
FORECASTS

A.P.M, Baede Bracknell, November 1976
D, Dent
&. Hollingsworth

Introduction

At present ECMWF has st its disposal both the N24 and N48 89-~layer
versions of the GFDL model. This guide was written to simplify
the introduction to and the use of the model, on both the CDC 6600
and the IBM 360/195. The documentation, kindly supplied to us by
GFDL, is quite appropriate as an introduction, but a few parts were
not well documented. These parts have been written by us and
added to this guide.

Chapter 1 gives a survey of the documentation, available at present
The next two chapters contain the new documentation of both the |
horizontal diffusion scheme and the I/0 scheme. Chapter 4 gives a
survey of the NAMELIST INPUT parameters. The last chapter contains
the instructions for using the model on both computers. Special
instructions for the operators of the CDC 6600 are added in an
appendix.

94 L /2

i.

3.

The

pob bk ped b
s L3 s
W 83 DD e

A"

Chapter 1 - Available documentation

The following documentation is available :

~Bource text of:

The N24 version on the CDC 8600
The N48 version on the CDC 6600
The N24 version on the IBM 360/195
The N48 version on the IBM 360/195

dictionary"” of the N48 CDC-version, containing an alphabetic

iis
the
def

t of all variables, externals, common blocks and file names,
ir relocations, references and subroutines where they are
ined. ‘

A written documentation, vrepared and kindly made available to us

by GFDL, of the following subjects:

3.1
3.2
3.3

3.4

3.5
3.6

3.7
3.8
3.9
3.10

Basic equations and the'finite difference equations
Subroutines and Control bléck

Equations for u,v, T and r, except sub-grid scale convection
and macro-scale condensation process

Vertical fluxes of momentum and moisture in the planetary
boundary layer and the free atmosphere

Hydrology at the Earth's surface

Sub-grid scale convection and macro-scale condensation
process

Radiation, part I: Solar radiation

Radiation, Part II:Long wave radiation

Integral quantities calculated by the program

Budget checks.

«es /3

4, A ﬁritten documentation, prepared by us and added

6.

7.

as chapter 2 and 3 to this guide of the following
subjects:

4,1 The horizontal diffusion

4.2 The 1/0 scheme

A survey of input parameters to be read in via NAMELIST INPUT,
This is chapter 4 of this guide.

Users instructions, prepared by us and added as chapter 5

to this guide, for the use of :

6.1 The N24 and N48 version on the CDC 6600
6.2 The N24 version on the IBM 360/195.
6.3 The N48 version on the IBM 360/195,

Operator instructions, prepared by us and added as an
appendix tc this guide for the use of both versions on the
CDC 6600.

W‘l/é

b

Chapter 2 - The horizontal diffusion

1. Cutline

This note describes the horizontal diffusion in the GFDL model.

The quantities HFu’ HFv’ HFT and HFR representing the diffusive

change of the wind components, the heat and the relative humidity, in
flux form, are calculated in the subroutine HORZD¥. The horiszontal
diffusion on the wind components is performed on ¢ -surfaces, '
whereas the diffusion of heat and moisture takes place in p~surfaces
to avoid an unrealistic pushing of heat and moisture on to the top
of mountains.

To avoid instability of the finite difference scheme, the diffusion
terms are evaluated at the previous time step. The subroutine
HORZDF is called from MAIN, after the radiation but before the
vertical diffusion. The horizontal diffusion of T and R on pressure
surfaces requires linear interpolation between o-surfaces which

is performed in the subroutine TR1 + TSTT and TR2 + TSTZ2 for the
contral points of the neighbour boxes and the central box
respectively. Bo the general outline of the subroutines is as
follows:

MA:N ; HORZQF‘ ﬂﬂ | FIG, 1

2, Horizontal diffusion of wind components

i a0 i G0 S B 60 SO e50 bk S S 1S O WS TRUE RS SRS SR

The equations for non-~linear horigontal diffusion of the wind
components (in flux form), as used in the GFDL model are:

caolb

S e (ORI ZAvZ 2 8 2 . 2p a2
gk, = (2k; a%82% cos? ¢) —toommr ®,D, D])42k} aa¢

1 3
. (p*p_| D] (1)
acos? ¢ 3¢ 8 ' ‘
¥ o= (2K _282AX%008% ¢) wmemtmee (D,D_|D}) - 2k2 a?A?
Hy © acos 03X *'s o
1 3 (p*Dt{Df) (2)

acos® ¢ 3¢

where D, and D, are the tension and shearing strains

EL. cosd 3 Vv .o _8u -8y tgh (3)
Dy = ‘Brosdsa 8 LX) (cosé}) 8 CO8G o A a3 ¢ e
- v cos ¢ 3 u - 3 v ou tg P
Ds aCos¢3 A * a 3% (cos¢) B CcoS ¢dA M ad ¢ * a (4)
- 2 2
D Ds % Dt (5)
ko = {,125

and the other symbols are self-explanatory.

... /8

U81ng the box- method the derlvatlves in (1) and (2)
are approximated as follows

9 _ _SXp*D¢[D]) (6)
acos ¢a A (p*Dt‘D() - a\ coSs (f)A)!\
8 _ _&(p*pg|D |) (7)
a9 ¢ (p*D DI) = 2k ;3'
with
o D)= (T =T Yy, 5 8aY 500 —u
% = \:) 3 X LC\(O}Q?QX o ¥ Xr
e € —ad { \
\j (Qchﬁ * &'\U\“ wi—)\) ¥ Lcu:cnr.a\k\%s‘v * jﬁﬁ—a*\z
@)
&‘{tpkb \b\) L? Z)CO“JCQO_; G%\ 0 Pl I ON CT A QK‘QB k{
ol e ‘TZZT“"’ &% an>'
'Qo b .
. l LO) ('('é * -Q({\) \
3 Loy]
e { ey)

Here the suffix j refers to row j, at which we are, whereas 1 refers i«

the neighbour boxes (o refers to the central point)(see fig.2).

It should be noted that the zonal variation of a quantity at a N or S

interface and the meridional variation at ar E or W interface are

neglected, although the terms tg ¢ and tg¢ ,which in fact represent
= V —g

part of the meridional wvariation, are retainzd . It should further

be noted that the first factor on the RHS ¢of eq. (9) is due to

averaging over the box and is close tc unity anyhow.

)7

2.3 Implawentation

The subroutine HORZDF starte with the caleulation of a number
of constants at every first point of a row (LARRAY (2) = FALBE.)
Referring for detaills to the codes dictionary, the following
trigonometric constants are defined (the suffix or parameter J referring
tc the number of the row : J is eguivalent to element 32 of
COMMON/CTBLK/)

COST (J) = cosgy

COSIN (J) = cos (44 +3h43)
COSJ8 (J) = cos (¢35 ~ %4¢ 4

The following constants are ocaloulated
TANA = B3
Za

TANAZ = 804
a .

ACTHL =

1
2 CO8 ¢3 DAj
cos (& + b,

ATOSN = 2% (-
. ~h A B
. cos (%3hh 8y
ATCSS 5
zmxamﬁ§m§

The last three constants are corrvected with a factor 1.5 if we are
at the row next to the pole.

[4H]

[

HE2 ki o’ cos®dy 2%hy

2 w2 gtk . AL
HE3 kg a cag¢3 é%}

cos f% ¥ i‘&% 3
aﬁgf aas;%hi

RCJINAN =

cos (Y é'%g'm
a&§5 cos @j
cos (% - M'% }

RCITAS = oX cos®;

#

RCJJIAN

¢ = 3 Ab,
BOJSAS = S08.8 3y

a A% Cos %"‘1

For every point the following gquasntities are defined :

PST = Py (%)
RPSTH = Sy
’ P CY)

in which parameter 0 vrefers to the central box and the suffix -
refers to the previous time step.

The next 400-loop snd the calls for TR1 and TR2 are part
of the T and H diffusion and will be discussed later.

. The final caleulatior takes place in the 100-loop for all
kmax vertical layers. In the following suffix k refers to the
o.level. Parameters O to 6 refer to the central box and its neighboure
according to the following scheme

(3] . %

l% g st.(

Fig. 2

First someo- level dependent constants are calculated for the E-V¥

direction. For the first point of the row the following west neighbour
quantities are calculated:

Sa~ 00y = U0 LG

Ty LK = . ¢ ¢
QLony ol méfmi wvﬁiﬁ*" NN hfﬁﬁﬁ;ﬁv *‘A mg&u WQTB—=
4 § QLC\LQQQ‘\& _:
DEy e = L o) - VQ:‘%) /\EQ. i
v 'EQ_LQ;u_U\ = Nk AQQ‘ e
iy E,_ 4 + A = C \M
kcm& a,\\h 28 X Qim%m\é ‘“Effp Uy, (\“Ssk

H V ‘ 3

sapBck) = | prago®s Tsacn? =\]<D§ £ D7y

1) — 1
PSDW3(k) = Wy. [by (0) +py_(39) .\ DI300)” + DS300)™ = 2w, \{(Di +D0)

Analogously the following east neighbour quantities are calculated.

N EIYeN Ao,
DT st = 2 P
I (iak*) AT —d
DSH e = - -+ 4% Q0 - 'B%\)t
: e @Ak o
X &
2 2
SQD4 (k) = (Dt + DS)k
—\ ” \
PSDW4 (k) = 2W, D Dé 4

... /10

For all but the first peints in the row all west neighbour quantities

are set equal to the east neighbour guantities of the previous point
and new east neighbour quantities are calculated, Next in the 10- and
1i-loop quantities with regard to the N and 8 neighbours are
caleulated respectively. Neighbours with:a weight smaller than

3 (sp (1) = . FALSE.) are neglected,

10~-l1loop:

prae “O%0E; %%A@*ﬂv Lo - mﬂ%@»@@ﬂ

&&&%'@% &‘Qa L2 &,;M‘@ys a\gé

Vetmia LR ¢ (w
. ou
i

= (D),

consl: ¥ oty
-.-_.M 4, {,ﬁ'} ,%_, AL ‘“Qﬁ* y@‘g ¢ gy ‘2 %
&»tﬁ‘%&&@% b o aw; u»g« Ty =) %QQ 3%{(

4 oy
ZKX%J&

DL ~ e ' B
PED 2wy Ly toe Bl VDT s aw, T o “D})y,

e T,
SUtANA = g.z% P O VG,

R g
sewna = Toaws B o)y, Vit

1i-1oop:
Ansalogous expressions for the $ﬁuth'ﬁ§ighécmrs.

Then finally expressions for F = and JF are calculated.

*#0;13‘

il

3. . Horizontal diffusion of temperature and humidity’

Because R and T diffusion are exactly analogous only T
diffusion ise treated here.

3.1 The basic eguation

B s G SO ST i N S D W SR TR O 0D L W NS S WO S NS VIS S

The equation for non-linesr horizeontal diffusion of the
temyerature is

= g L % '@ ‘r“—““‘"“m‘f
“g&g\&&k iw%mg?& &am‘é\) bg‘\%‘\,}* 3

(103
o
+akoatacg %*’% Ty, w&%%‘)? 2y 1

Here the T gradients, as mentioned before, are svaluated on
pressure suriasces.

3.2 Pinite ﬁiffereﬁce form of the equation

P O 10 Y T

Bk T D B R WS RS 40 O B 0 2 O RS st Gk s s

Using the hox method eg (10) is approximated as follows :

whs %ﬁr_ a ﬁ&\ awe@ (Em?’ ‘gz%@ Tl =%, gﬁx}

LA AL w‘néé

\f@s%% R %%@) .,m;..m BV & 2 %‘ W :

e e T p— :
+akoetan (Z-Z Top) T Ty QY
ﬁ,&%&%
cotlfim I any v
\ S g W ‘%‘3]

oo /12

3.3 Implementation

B R i o L D U SRS U S p——

-12-

The horizontal T-gradient on a pressure surface is determined,

'in general, as follows

10

- between two boxes

of the central and neighbour boxes

Calculate the pressure by at the main O-level for each interface
Determine the 0value of this pressure surface at the centres

Interpolate linearly between the O-surfaces to obtain the

temperatures on this pressure surface at the centrail (Tz) and

the neighbour (Tl) boxes

T o)

Tty

Tatkx) ‘“‘“/‘"% e
- -6

Note: In all figures full drawn
skew lines are O-surfaces,
dashed horizontal lines are
pressure surfaces

T
/ Tl‘\(l\
ZDL—|
Ty i
Qf“’/) L3
b S B
Q"‘H T!u‘uc&‘\
B

.../13

Ad 1° The pressure at the interface beiween central box ¢ and
neighbour box I is calculated as follows

Ground pressure at interface DAy, = Rx(0Q) ; px (1)

The pressure at the interface on the main elevel is therefore:

- px{0) + pe (I}
Dp= O 5 -

Ad 2° The g=-values ép (J} at this pressure level in the centres of
boxes J are

» tad « P
bplPiety - Pu Petx)
*Par
Ad 3° For the linear interpolation we want to koow 1f these values

w@lm‘ga@ =

sy(é} are within the range U4y gty OF nOL. This iz done
for the upper eight layers in the 400-~loop as follows

- v -y” T oy - (} Ih 7Y £ «
We want uggsg between k1 and R

S C byl ady

e ,.
e b g Fato)w P, i) o\~ bus

&%*{3\3 b,
With Q8(1) = Ce) ¥Rl and QS (140) = Tr®I v ix)
29,a) 1%, (o)

thig inequality reads for centre points (JI=0) :

f o Bu P i~ Q3 (L S - m
éng i’%

and for neighbour points J = I

m.g' -
1 mfui PI=RSIT) S 1 by
e, A

e
oo /14

.

MNow the test if 1-GS (I) is between the limits indicated in
the previous two equations is not actually performed, but instead an
aspproximated test is dome., In the 400-lcop it is investigated if
[1-QS(I) | is smaller or larger than a certain gquantity TOLs=,04263
for all levels down to k = & { so except for the lowest level one
TOL~value has been assumed). It is the same number used in STDPHI.
TOL is about egual to

9] o o
8% - B 042082863
W =

and might well be a slide rule accurscy approximation to this number,

In the 400-~loop integer array elements NGS (I) and NQS (I+10) are
defined as follows :

Central point

S :
NQS (I+10) = 0 if 0 <O 4 Or% P41

<
= ~1 if ﬁ? inside this vange and p* (I)- p* (o)
= +1 if ﬁp inside this range and p*{(1)” p* (&)

neighbour points:

o & ¢ -3
NQS (I) = 0 4f 0 <0y . or O >0,
=l 3f Gp inside this range and p¥*{o)} p*rH1)

=4l iF ﬁp inside this range and p*(o) p*P(1)

Next the subroutines TH1 and TR2 are called. %We consider only TRI;
TR2 is analogous. '

oss[15

~15-~
TRl

In this subroutine the three NQS-values are treated
separately.

1° N@S = -1

© T
A 3
Tk-\LO) \l\
T : be..
&) l L \\,'qu(:)
T to) ! dQ,\
' ’ éu?;\\
' * T%’t\ x \
L 4 A
bis) Pysod b,)

T1 (k,I) is obtained by simply linear interpolation between T

k-1
and Tk
T T < Ge-le.,
T T b~ be.,

which implies (k = 2,9)

Ty e DL - 2oy Petd vy) yT)
2. () hed

Pi o)
Fleay e Wy Tt /ey s e -1)
2P, e\

If however o is the highest o-level (k=1) then T, (k,I) is obtained

k 1
by extrapolation : =< (L 3D - G$ -y
1
=T, SREPI

../16

-16-

implying

o= t_{{,f-’k\ 6\ @%(G*? - }X @) & {_l;u) fato) s, tx)

20,

- LQ\\ ‘T‘«,_..L‘&\‘.\/ (L -6

2° NQS = +1

. T,
/‘;_//é;&v" k- ‘
O !
T, 1)
TR — T
LR (v N e

Ty L)

Tt -

-k -t =

Px®\ D 4 @) (OHCY

Again Ty (k,I) is obtained by linear interpolation, in this case
between Tk and Tk+1' If Oy is the lowest level, extrapolation might
produce unrealistic high temperatures, therefore in this case Tl(k,I)
is approximated by averaging the temperatures of central and neighbou:
point at the main o-level

T,(k,I) = 3\Ty_ (I) + T, (0)1

which corresponds to the supposition that the temperature is constant

on the pressure surface Py -

oo /17

-t T

3% NQS = 0 : eall TSTT

In TSTT at first a quantity 48K is defined :
QSK=o{k) Px~ (0) + pa- (13 f,g; (&)
2p#*. (1)

Three cases are distinguished :

a) Gt €, (brgata)

In the 10-~loop a search is made for the level in such that
&{m«i}ﬁé*pik}gﬁi(m} and next ’?1(3&%13 iz determined by linear
interpolation betweend (m) and & (m-1)

T &k Iy e T btwy.a gtk - Pe- (o) + 0, t2) %"r AR %
L8yl e

. Pa-tohap ¢
@{ﬁi%‘} . w‘*;: xémfgg&‘mmﬁéaﬁi’%&ﬁ%{&;{f&ii‘%‘{a&}’%s
TR

b) & (kX6(2)

In this case m is set egqual to 2 and the same interpolation
formula as for a) is used. This amounts to interpolation in

case L{1) 4 ﬁ»p{.’xﬁs% b (2) and extrapolation if &g (kg & (1),

o) b (x) > &(9)

Again two cases ave distinguished

1) If the maind -level to which p belongs is also 9

(i.e, k=m=8) then it is assumed that the temperature is
constant on pressure level Dy, B0 ¢

TLE) = 3 [Ty (0) ¢ T, (D))

caeli}:g

-18-

II) 1If the main{ -level, to which p belongs is{ 9 (k¢ m=9)

then the following picture applies (with, for example, k=8)

o 1

\ @\i\a\, -

K);}Q} P,&) ‘};\) ?ﬁ* {3y

At the neighbour point the & —value Z,«A is determined by the pressure
level, corresponding with &8 in the central point. Next it is suppos
that the temperature at this level is constant and equal to T8(0>'
Finally, T1 (8) is calculated by linear interpolation between
l:»A and{,g'.
(L - LT -
Ty e T eI TR @) H - Ly Ty o)

ba- o
WM bp &y N0 Y e &y, fe- 2}
1-?&_(‘3;\ Ra-&)

With the calculated T1 and Tz,finally, HFT is calculated in HORZDF.

.../19

10

Chapter 3 - The 1/0 scheme

The 1/0 scheme for the GFDL model ls designed to work
for regular lat-long and for modified Kurl grids. The data is
kept on a {direct access) disc and is stored sequentislly, the
data for the first point in the first row Gacurriﬁg first and the dats
for the last point on the last row occurring last, Fach point has
a grid#k#*beginning at 1,2 NOPTS where NOPTS is the =+
of points on the grid. The data is organised on the disc in blocks
of length BUFSIZ, except possibly for the very last block which can
be of length less than BUFSIZ.

In core we have a circular buffer called PTBUFF where we
have space for

1 read block where reading from disc is being done
for+ level dats

1 write block where writing to disc is being done for ©+1
level data

1 store block where results at time levelt +lare being
stored befors being written out.

=

blocks where N is large enough to accommodate data .

for all the points between the N neighbour on an LL grid
(NW on a ME,modified Kuri) and the 8 neighbour (on LL)

or 8E peighbour { on MK}, and all the intervening polnts.

To fix ideas suppose we have an LL grid with & blocks per row.
Then the maximum data requirement is illustrated on the sketch
if we are computing in the block marked (x).

write store
o ! T+ T
T T T T T (%)
T T T T o
read T
* LL stands for latitude Longitude grid
ME " " Modified Kurihara prid
Xk

The sign e designates "NUMBERY throughout this chapter.
‘ {20

T

If we have M blocks per latitude then PTBUFF should be at
least (2%*M+4) blocks long. The scheme is desligned to handle blocks
of arbitrary length.

As soon as we use the first word of the last block of t level
datas we initiste a3 write for the next block.

As soon as we have sftored the 141 level data for the first
point of the store block we initiate s write for the previous
block,

The computation is not done on the buffer PIBUFF but
rather on a8 small buffer called CLASE where we have tv level dats
for the current key point and all its neighbours together with space
for the +t+1 results at the key point.

To begin the computation for a new point we call a routine
called NEXT which does the following

1, Moves out from CLASS the v+1 data for the previous
point to the store block of PIBUFF

2. Moves in from PTBUFF to CLASS the v level data at the
current point and its neighbours.

In order to do these moves NEAT must have pointers to the point
in PTBUFF where the dats is t& be moved to/from.

These pointers are found by successive calls to the function
subroutine NEXTPT whose argument is ¢ the grid +# of the point in
guestion. If the argument is negstive NEXIPT returns a pointer to
the place where the { 1+1) level data is to be stored., If the
argument is positive NEXTPT returns a pointer to the place where the 7
level date for the grid point can be found,

. /21

T

In addition NEXTPT performs two other fupcetions, If the
point where the { 1+1) level data is 1o be stored is the First
word of & block then it initiates s write to dise for the previous
block., If the point where the v level datas is to be found is the
first word of the last block of v level data in core then it initiate:s
a read for the next bleock,

At the beginning of a pass through the grid we need to know
where in PTBUFF we should start storing, siart reading and how many
blocks we should read to begin with., On an LL grid the answers are
straightforward if the block length is a sub-multiple of the #%
points in a row. The answers are not so clear if the block length
is not a sub-multiple or if we are on a2 Kuri grid, This is where
the simulation program is used,

The simulation program is essentially the same code as the
routines NEXT and NEXTPT., If simulates a read by setting the
appropriate block of PTBUFF to plus the grid # of the data to be
read. It simulates sz store of (v+1) data by setting the appropriste
arez in PTBUFF to minus the grid 4 of the point being stored.
When it simulates the write it checks that this negative value is
as it should be. It also carries two varisbles INDEX, NNDEX,which
are respectively the core numbers in PTBUFF of the first word of
the block currently being read or written.

In NEXTPT an error message is given if (1) INDEX = NNDEX
indicating that we are reading data into a block from which we are
also writing (ii) If, when we are writing out, the contents of
PTBUFF do not correspond to the negative of the appropriate grid i,

in NEXT a check is made,everytime we use T level data, that

the contents of PTBUFF is indeed the grid #¢ of the correct point.
If not then an error message iz issued.

.. /22

‘

e

g
%

The simulation program reguires the following dats

NRES = &t of latitudes between eguator and pole
NPPR = 4% of points per row
BUFSIZ
= %% of points in & block
NOBUP
= & of blocks in PTBUFF
I0UTA
= point in PTBUFF where first store is to be made
IREADA
= ypoint in PTBUFF where first read is toc be made
IBUFIN

uz %% of blocks to bhe read at start of psss.

If BUFSIZ is less than or egual to the $=F of points
on the first row then we must read enough blocks to achieve
the following :

1) '?rovi§e dats at all the neighbour points for the
first point in the grid. This implies that we have
all the first latitude and at least the first few points
on the second row.

2} Ensure that the first point of the last block read in is
not on the first row.

If BUFSIZ is larger than the $+ of points on the first latitud
then we need only read in 1 buffer io begin with.

D

FLOW DIAGRAM FOR NEXT 1IN BIMIO

e U Bt A FERS S50 (S LTS R 0 R SO A e PP 1 R S5 ST D TR TR S5 R AR D O SRR el TS S (s WS PR S G SRS 5 TR S S T SO v alee S G e et S 4

KROW -~ the row & of the next row - initialised in msin to 1

NROW - KROW-1

NPOINT- point number in row - initislised in main to O
Coming into NEXT it is the Qeint"nﬁmb@r.éf the previous point.
Then incremented by 1 after t+1 data for that point has
been sent out to PTBUFY

NPBROW =grid no of last point in previcus row., The values are stored
in NPBROE - initialised to zero in main

NPIROW= 4% of points in curvent row - initialised to zerc in main.

IPTPTC= Coming into main it is the pointer to the place in PTBUFF for
data of previous point, Initialised to 1 by data statement.
After 1 +1 data has been sent out to PTBUFF for the previous
point it is redefined by a call to NEXTPT as the pointer
to the 1+1 data for the current central point.

KPTNBR= Array containing point number within its own row of surroundin
points,got from FINGER.

The simulation works as follows :
As the 1 level data is read in from disc the area in PTBUFF to which
it is read is set to the grid point number of the point to which the
data pertains,

As the <t+1 level data is written out from CLASS to PTBUFF the
area in PTBUFF to which it is written is set with the negative of
the grid point number to which it pertains. As the constants are
transferred from one part of PTBUFF to another in the write out part
of NEXT, and as the data is read in from PTBUFF to CLASS in the second
part a check is made that the contents of the point in PTBUFF {from whi
the transfer is made is precisely plus the grid point value of the
point to which the data pertsins., If it is not then the data has
been over written and we get an I/0 conflict in NEXT,

. /24

START
BROW + NPOINT
grid = of
revious point

TR (w
ALL NEXTPT (~)
to find where

T4+ data to be
ritten

[Set that word in
PTBUFYF with
(~gr==) of point
to which data
pertains

IPIPTC IS pointer fo]

Tlevel data of
previous point

DTBUFF (IDTPE).
~ NPEROW+ NPOINT =

g o

e oy

1/0 conflict for transfer of
constants from IPTPTC to IPTPTR

YES { No I/0 conflict)}
§ .
H
%

Increment point
in row
MMJMMMNN

~Have we
' gone to & new
row
N\M
Ho

Reset NPOINT
NROW
KROW
HPBROW
NPIROW

Call FINGER to
establish point
number within its own
row of each neichbour

]

For each
neighbour
do the
following

Call NEXTPT(grid =f=)
to fipnd pointer o

PTBUFF for this grid
ogipt

N does the number
in this part of

PTBUFF correspond
| to the grid no of fthe pailnt

YES

/0 is o.k.

]

Y o n

P I ¥ o

‘Ql/zs

€. . - FEEN

£ £
o g

FLOW DIAGRAM ¥OR NEXTPT IN SIMIO

NEXT PT

Variables

IREADA
10UTA
IBUFIN

BUFS1Z
NCBUFF
TBUF
INPTS
INPTSP
INDEX

INDEXP
LASTPT
NNDEX

QUTPTS

OUTPTSP
NNDEXP
BLKNO

BUFS1Z
LASTPT

is given as argument a grid point =%

and returns a pointer which tells where in PTBUFF
the tlevel data for that point is kept (positive
argument) or where in PTBUFF the T+1 level data

for that point is to be written (negative argument).
It is called with zero argument twice, at the
beginning and end of a pass.

At this time it returns the value 1 at beginning of
pass and LNDEX at end of pass.

In addition it performs the I/C to disk as required.

position in PTBUFF to which first read is made
” i Y fyom which first write ls made

= of buffers read in to begin with. Must be
sufficient to provide data for first block (i.e. on
latitude and at least one point to south of 1st
point).

== of pointe in one buifey

== of buffers in PTBUFF

BUT'31IZ * NOBUF

grid 4= of first point of next block to be read in
grid == of last point of next block to be read in

core #= of lst word of next block to be read in unl
we are at tho beginning of a pass when it points

to core == of 1st word of last block that has bsen
read. g

core == of last word of next block to be read in
grid == of ist word of second last block read in

core == of lat word of next block to be written
out iniﬁial&ﬁsé to -1 at start of pass

grid =f= of first point of next block to be written
out '

grid == of last point of next block to be written ouw

core == of last word of next block to be written out

block == of next block to be read or written.
Used to route I/0 to correct section of mass storage

== of points in 1 buffer

grid == of lst point in second last buffer that has
been read in

If BUFSIZis less than or egual to =& of points in first row

1}

then at the beginning of a pass we must read in
enough blocks to achieve the following

provide dats at all the neighbour points for the first
point on the grid. This implies that we have all the
first latitude (fo get E,W neighbours) and the first o
or two points on the next row in core.

. /26

T

2} In addition we must ensure that the first poiant
of the last block read in is not on the first row .
{These two considerations determine the size of IBUFIN
= NPPR (1) / BUFSIZ +2 }.
Then LASTPT is set to the grid #F of the first word of
the next to last block.
Thus we have the block beginning with (LASTPT + BUFSLZ
in core . When we first use the data for the point
(LASTPT + BUFSIZ) we initiate a read for the next blocl
(the first word of which has grid kk (LASTPT + 2¥BUFSI:
and increment LASTPT by BUFSIZ.

If BUFSIEZ is greater than the =k of points on the first row,
the start up procedure is a little different.
We set IBUFIN =1.
At the beginning of a pass NEXT calls NEXTPT with
argument 0. One block is read In and LASTPT is set
to (~BUFSIZ + 1)< 0
NEXT immedliately calls NEXTPT with argument 1.
Since 1 (=LASTPT + BUFSIZ) is the lst word of the 1l:
bloek in core a read for the block beginning at
1+ BUFSIZ (LASTPT + 2 BUFSIZ) is initiated and
LASTPT is reset to 1.

Thereafter the procedure is as above. The first
time we access the data for LASTPT + BUFSIZ s read i
the block beginning at LASTPT + 2*BUFSIZ is
initisted.

Whenever we initiste a re ﬁ for a block

IRDEX is set to the core i of the first word in
that block.

We will flow diagram the four parts of NEXTPT separately:

1)
2)
3)
4)

Beginning of pass IPTPTR = O, PARITY = TRUE initially
Positive argument reading in from disc if necessary
Negative argument writing out to disc if necessary
End of pass IPTPTR = {, PARITY = False initially.

..]27

1}

PARITY = TRUE,

900 'PARITY 1
= NOT PARITY

NEXTDT = 1

oo G e

start of pass

TREDAP

fTirst read

= core H= of last word
to be read in on the

INPTS = 1 |

IOUTPTS = 1

INPTSP =
[BUFSIZ-1

Set PIBUFF(L)

INPTS
= INPTSP+1

|

INDEX ==
IREADA +
UFS1Z *
{(IBUFIN-1)

grid 4+ of 1st word 1o be read in / written out i

INDTS+ IBUFINY 8rid = of last word to be read in on lst vead

, I = IREADA,IREADAY to appropriate grid fks

simulating a read

Set INDTS to core #4 of 1st word to be read in

next read

Set INDEX to core #% of l1st word in last block
read in{not used again)

LASTPT =
* BUFSIZ

1 + (IBUFIN-2)

Set LASTPT tc grid 4+ of 1lst point of next
to last block. '

RETURN

Fhs]~]

— LS

2). Positive argument. Return core # of level data for IPTPTR.-
Read in if necessary.

Y LASTPT is core # of 1st word of next to last

.LE. LASTD FALSE block read in
go to 110

! . .
If (MOD(IPTPTR,BUFSIZ) --1PTPTR ;irglrigm
\ FALSE o

block in co:
Here we wish to
address the fir:
word of the las
_ block in core a
TRUE so we initiate
read at this po:

LASTPT= Reset .
IPTPTR LASTPT 1«

first wo;

on next -
last blo
INDEX =
(IPTPTR +
IREADA +
BUFSIZ -2, TBUF
+

Set INDEX to core # of <€-———-
first word of block being read

H

N
in. 4
, -
If IPTPTR
m .
TRUE_~"GE.LDIV go >
LDIV+1l is 1st word of last block in to 110

the grid . If we are addressing this
block then no further reads are

necessary. i FALSE

INPTSP = INPTS

INPTS is grid # of 1st word to be &-——-- + BUFSIZ - 1

read in the read to follow immediately.
INPTSPis grid # of last word to be read
in the read to follow. i

BLKNO = IPTPTR/
BUFS1Z+2

|

IPTPTR = K¥% BUFSIZ +1 in block K+1 P
I .+, BLKNO = K + 2
This is block # of next block to be read

190

110

INDEX IS core # of 1st conflict

word in block belng read |

being written. |
HENCE THERE IS AN I/0 CONFLICT.

Reset INPTS to be grid # of next
point to be read in

INDEXP = core f# of last, ____
word to be read on next
read

I/0 (TRUE) [~

NNDEX is core # of 1st worid in block

Read in data into INDEX ~ INDEXP&—-

INDEXP=

-1

INDEX+BUFSIZ

f INDEX

PTBUFF=INPTS+IC

_EQ. NNDEX™
______ FALSE
__| Do 101 = INDEX,
INDEXP

INPTS

INPTSP+1

NEXTPT = QOD (IPTPTR+IREADA-Z2,TBUF)+1.
This gives the pointer
required.

RETURN

1 an

3) Negative argument,

B T4

stored.
KNDEX = ~1 at start of pass

(Mod(-IPTPTR,BUFS1Z).NE.1) go to 510

Return core & of place where T+1 daterfor IPIVIR is to be

IPTPTR=-{K*BUFS 2+1} i.e. first word in a
bhlock

TRUE
_f&“zfmngPTPTR;LE,zj g0 to 510
 __TRUE /S %;”“%Eb possibility of I/0 conflict
TRUE 12 ~(~-IPTPTR.LE,.BUFS1Z+1) go to 4?

¥

ffmgﬁe possibility of I/0 conflict
p

FAL%E

© ¥ If (NNDEX.EQ.INDEX

S TRUE ™ THeéITHST of these has been
redefined for next write,
Thus there has already been an
1/0 conflict and to resolve it
we would need Read,Write
checks on the I/0.

NNDEX=Mod redefine NNDEX to first word of

(~IPTPTR i previous block
~-IOUTA -

BUFSIZ,?ESF}+4

1f (NNDEX.EQ.INDEX)
g@{then we have an I/0 confliet)
e

UE

FAISE (No I/O conflict)

OUTPTSP=0UTPTS
+*BUFSIZ~1 OUTPTSP is grid = of last

point to be written out.

~31

BLENO

= ~IPTPTR/BUFSIZ This sets the block number for mass

storage of the block to be written

cut.
INDEXP This sets NNDEXP as last word of
NNDEX+BUPSIZE~1 block to be written out

e

Do 127
I TBUFF(I)Y-NE.~(OUTPTS + IC) then I/0 conflict

|

OUIPTS=
OUTPTP+1

NEXPT= MOD {(~IPTPTH-IOUTA,TBUF +1)+1 gets pointer for
next store.

... 132

.

4)End of a Pass
At the end of a pass there are 3 calls to NEXTPT

1) NEXTPT (-NOPTS) NOPTS = # of points
This tells where to store the v +1 wvalues for the last point

2) NEXTPT (NOPTS)
This tells where to find the KPTHBR values to be stored

with the T +1 datsa
3y NEXTPY (0)
This does the final write out.

In the full model these are done in a separate routine ENDTIM -

Here we discuss the lest call to NEXTPT (0). At the beginning of this
we have parity = false

PARITY = FALSE

900
PARITY =
NOT.PARITY
NEXTOT=1
810

LNDEX=MOD | ﬁ |
POty . Set LNDEX to core # of 1st word of next
(NNDEX+BUFSI?»1fTBUF}+i block to be written

" 1f (LNDEX .EQ. INDEX) we have a possible 1/0
Leonflict : ' '

™,

LASTBK = give last block § for mass storage

NOPTS /BUFSIZ
ffg‘ wﬁ””ifﬁwwﬁ If MOD ((NOPTS,BUFSIZ).NE.O) LASTBK = LASTBK+1
QUTPT?nGUTﬁTS +BUFS1IZ-1 equivalent to setting OUIPTP
OUTPTP=MNO(OUTPTP ,NOPTS} to NOPTS

LﬁﬁEXPmLNDFx+(GU?PTPKOU?PTS}

14y

-39

15 N,
i'i‘w(n NE. (OUTPTS+IC) go to 13 - I/0 conflict

|
NEXTPT=LNDEX
RETURN ' set NEXTPT to this to check for I/0O conflict
P at beginning of next pass.

Jsii34

el

Chapter 4 - Namelist Input parameters

In subroutine CONEOL s number of input pdrameters can be read in,
using the (non standard) FORTRAN facility NAMELIST, This NAMELIST
ig called INPUT. Most of these input parameters have default values,
defined in BLOCK DATA. Therefors ounly input parameters,which have
no default value or should have a value different from the default
value, are to bBe specifisd in the NAMELIST. For the predise format
of NAMELIST we refer to the manual of the relevant computer. Table 1
summarises all relevant NAMELIST input parameters, their default
values and their meaning.

Notes:

1. On the CDC 8800 1t is impossible to vead in character stirings

viag NAMELIST. The code on the CDC 6600 has been chanped such

s

that numbers can be read in for the parsmeters TYPE and

TYPESM with the following meaning -

CPAPEY 1
'DISK' 2 ,N
'8PECY 3 '
WAVG! 4

4. N24 dptegrations on the basis of the svailable 1 March 1865
dats set, using speciral filtering aear the pole {(TYPESM='SPECY)
Therefore

are usstable and blow up after some hours rodel
wolghted averaging (TYPESM2'WAVO') should be used,

\§D9f85

TABLE 1 %

TSt R

) ’%xf*ﬁ
-lw-r.*‘ 1}1»&

Input §
?ﬁram@tar

Default

Comments

MASTR

RTAUST

TypESM 1)2)

CHABH

NEWTHT
Typy 1)

VBEG

LABEL
IHIs

TSMTHS

NEUTHZ
ibisp2
ISMT

aone

89908
PEPEC

LFALSE.

- FALSE,

the experis
ment label

21800

(N24:180
IN4B:218 -

(N24 -1
1N4g8:215

H

53

o displacement of

Biart up KTAU: ;
needed only 1f TYPE='TAPE',

Stop KTAU,

Type of smoothing at poles, ‘WAVE =
welghted averagling, 'SPEC' = gpectral
filtering.

If JTRUE., plcking up after corash or ,
something else such that inteprals have
net been copled from disk to tape.

If JTRUE,, no integrsls on Integral Tape
dats set,

Starting up from data on 'DISK' oy
‘TAPE'

If .TRUE., preformat units 14 and 15,

Ezperiment labsl for CTLBLE

Interval in seconds betwesn history
tape writes

Do Euler Backward every ISMTH2 steps,with

Bo time smoothing every I8MT steps.

1} qew note

2) see

A

e

0On previcus page

note 2, on previous page

a?@f.gg

squal to lagt step completed

IDISP2, for NSMTHZ steps.

Chaptey

wi 5 B e

5 =« User instructlons

E]

@

P b ek

£
ol

B
B

The W24 version on the Met,Dffice IBM 360/195,
Source Code
Date set DEN=LOMWF,SRCE.¥ETOM3 contains the source
text of the program as a set of members, each containing

one or g few subroutines. Table 2 gives a summary of the
member names and the corresponding subroutines.

Ohiect Code

Dats set DEN=ECHWYF,ORJ,METO43 contains the object code

of the following necessary subroutines:

ERATUR { an obiect code version eguivalent. to the above...

mentioned Foriran version)
FORTBUAM (2 set of subroutines for direct access I1/0)
CPUT (an IBM OPU timing subroutine)

Dats set DSN=MH0Z,0BJLIB contains the time-of-the-day
subroutines

BIZTIME

BITODAY

Dats set DEN=M22.0BJLIB contains a subroutine, which writes
time of day and date in an appropriate format:
DATZCF

Date set DEN=KET.PROCGLIB contains a date subroutine
ZRDATE

&@0;3?

&

o 3 oon

1.3 Load module

1.3.1 Data set DSN=ECMWF.LOAD,MET043 contains s load module,
including all above mentioned subroutines except the
following redundant ones : ANTL,CDAT,COMP, IPMA,SOLA , ZENT,
ESATUR (Fortran version),
This load module is created, using FORTH,OPT=2 on the IBM 195,
Moreover, in order to simplify restart (see below) lines
00014300~00014900 of subroutine CONST have been deleted.

The member name of th%s load module is TEMPNAME

1.4 Location of data sets

The above mentioned data sets can be found .n the
following disks

DSN= UNIT= VOL=SER=
ECMWF.SRCE.MET043 3330 METO043
ECMWF, OBJ . MET043 3330 MET043
M02.0BJLIB 3330 SYS005
M22,0BJLIB 3330 SYS006
MET.PROGLIB 3330 SYS002

1.5 VWork disk files

On disk MET(043 six disk files have been prepared corresponding
with the work files required by the program. Table 3 -
summarises the essential data,

1.6 Input tape

The input data set of 1 March 1965 are on & magnetic tape which
can be attached with the following set of JCL cards
//GO.FT12F001 DD UNIT=TAPE® ,DISP=0LD, VOL=8ER=HOLY2,

// LABEL=(1,KL,,IN),

// DCB=(DEN=3,RECFM=V3,BLKSIZE=11824)

o0 /38

1.7

B8

Restari

For long runs (> 10 min. CPU time) Met, Office requires
appropriaﬁe restart facllities., This means that restart
from the work disgk files should be possible by the operator.
Apart from minor changes in the name list input parameters
(see Chapter 4) at the very first restart, the main problem
is that it is necessary for the system to know how many
History files have been written to tape. For this purpose
subroutine CONSOL has to be modified. The modified CONSOL
starts with calculating the number of written history files.
Next all history files on file 10 are skipped by READ
statements, using an END=parameter, the execution of which
causes an increase of the file counter with 1. At the end
of this procedure the file counter has the right value for
the next history file. '

Fortran changes of CONSOL:

NHIST=KTAU/60 00014210

c THE ABOVE STATEMENT IS OF COURSE 00014211

c DEPENDENT ON FREQUENCY OF HIST.FILE 00014212
C WRITING 00014213 \
REWIND 10 00014220 ’

DO 100 J=1,NHIST 00014230

IF (NHIST.eq.@) GOTO100 00014240

DO 101 K=1,114 | 00014250

c 114 IS NUMBER OF RECORDS ON 00014251

C N24 HISTORY FILES 00014252

READ (10,END=100) 00014260

101 CONTINUE 00014270

100 CONTINUE 00014280

These changes have not been incorporated in load module TEMPNAME,
‘and should be included usiﬁg the source code of CONSOL, changed
with the help of METMERGE (see example below).

FTo further simplify restart, lines 14300-14800 in CONST have
been deleted.

lae‘fm

e 3

Because the S8TOP facility has not been implemented in the
N24 version, the operator can only stop a run by an operator DROP,
The operator should be instructed to drop the job only when
the tape drives are not active. Otherwise a history file might
be lost. This method, although admittedly very sloppy, gives no
problems in practice. Otherwise the STOP facility can easily be
implemented. For details see the next paragraph on the N48 version.

1.8 Example

Table 4 reproduces the JCL for a 24 hour run. Six hours
have been completed already and this run starts from the work files,
Every 6 hours (60 time steps) a history file is written directly to
magnetic tape. The job is made fully restartable.

After the joboard, subroutine CONSOL is changed, using
METMERGE, to make the job restartable { see 1.7 Restart). The
modified CONSOL is compiled and in the LKED stage linked with load
module TEMPNAME. Next 8 history file data sets (FT10F00n) are
defined on magnetic tape 410015, followed by the other data sets ,
{see table 3). No data set definition of the input tape FT12¥001 'is
required because this job restarts from work files and not from
input tape.

FT13F001 is a necessary scratch disk file which does not need to
be catalogued.

FT29F001 is s special output file on which a summafy of important
Job data and results is written, In this case this file is
directed to the line printer.

Finally the JCL ends with NAMELIST INPUT (see Chapter 4).

AP RS AE G JUA (RO mer) «Bab N e T sl ent Sl unzma s s M =110

78 TMNFOrM SYSTEe= i : :

EXEC
Vil =

FEOF

//

Y4

/7
o/

e/

£
g4

7/

a4

Py e SETUFSYE Se TR USRI GH

METE =G o NSNaF UM A o 5w CF e b Tra 3 UNIT=3330
SrH=tr Tuba e +=TY=|(' :
«SYSIN D

pHﬁu‘f NarvFz=C 0SS M 2z s

e
p

- e
l

I

f

“IST=rTALA T

:WINﬁ [R4]

O 100 i=le =187

FlonISTer G o03GD TO 160
1:1 ~zlelles

EAN(INGE- 2100

101 © ‘\!T? 1U‘W

100

SELE
P A EXEC FORTHCL
J7EORTUSYSTH 9D

LeED LD Dé) s

L<Fa

TONT T

TE Sgu1=ﬁﬂplu?ﬁ0-<~~£:S001hﬂﬁﬂ

CISU=§ =
KW:ECmfF.@Cﬂu.METﬂa?-uIS?:Sf&sUNIT:333u

SYSTH 0D

TNCLUDE Luﬁﬁ< Edbn aME
FRTSY moly

CA/GOLFTIOF0GY DO UNIT=TA P~¢;3f<9"wE\.v
DCR=(DEN=3 ¢+ CFM=vyEIeL-FCL=11"
nes

=F 11 €1

F/GOFTLIOF002 00 UNTT=TaPES U TSPaNFL V0L SSER=410015L 20

A,

/7

L/

7/
4

a4
i

e
7/

F7GOFTLOF00R D UNTT=ToaPe Yl i SPoME v o v TSE=2100 19 e aRmr

s

I/

7/

a4

44

'//

/7

/7

7/
L
//
7/
7/

£

A
S

i

DCR=(DEN=34CECFM=VrS s LufCL=11720a =L S 7E=11 <24 o
DSH :
GAGFT

=FTLE?

LOFOA3 DD UNTT=TaPES«DTSP=NEw e VOL=SER=410015LadrL=

DCH=(VEN=Z ¢ -t ChosVen et CL=ll 2L S h=]]-2a e

nan

//GOFTLIOF004 DN UNTT=TePE9aDTSP=NE 0o vDL=S

DCH= (DENT3 e ECFMEyRSg LRECLTL] - a Sl
T
/GO LFTLOF00S DO UNTT=TAPE 9.0 SP=NEw « O

e

=FILel
SER=4L10015 L 1R~
\fitzll 24 e

SF[Lfa
ESER=L10015 L ARF

DCF=(DFE =3« ECF sy s i s Ler CLell-20 el S7Fe=]l~Cat s

SFrea N ; . N)

DCE=(DEMN=T 4 FLF4=V?$stECL=ll;2;-%LéJ;L“ 11- dwzs

pse

=P TLEF
F/GNFTIOF007 DO UHIT:T&P£9sDTSP=NEv-JUf

=FTLE?

DCR=(UEN=3 e S CFMaVE S o LECl=11+ d “L-ST el 240

Ose
GNLFTY

=F il
1180401 DO DSN=FCMur (CTLHL- »

UNIT=3331ev0L =582 0T04300 SP=0L
GOFTIZ2r0NL 0D Fust :

F/GOGFTLIZF00] DO Ul T=SYS ks 5-ACE SURCTICICISRLUEEE
DCrR= (KECFM= Vgﬁsﬁl‘ -
//GOFT14F 001 DD DSw
U?‘TT qBjnt\;()' =S E et - .
CHeFTInr0ul DD DSH=ECYwF o arE]l {r?ﬁ -z
UMTT=3330ev0 =SE 28 T4 50 T SPOLH i S
F7GVFTLIAF GOl DU OSSTF Mor o« (0TS s e s LT
UNTT= i : .
//GULE TISHONT DI NS
s

51 E=) 3030)
A E T awk 14 o
AR T0w3eii TSPz

33376V =SFEw=tE T043 00 SRz N

ELomr o 1T b

PINT T =33 a0 =S eME T oA, s Sa T

MEST

VHFG=,

7,

I1=158=

ﬂrwa

@n.ﬁrzuFojl Uy SrseuT=a
D8YSIw DD # :
37 PUT

m()!},*’T.&U"«Tm—+ {} . !
FALSE, enEw]n T*.TKLt.nTYrr'” TSR,
2100418 T~8 QNng.H TrHg=1201" {kya 1,Typ;\z~u

Table 4: JCL for a N24 run on the IBM 360/195

eV TR

L...

L=

L=

S (5 it

I«"L: (7

J"'L L]

(Hhex~l t g

=SF d,wlﬂalb,o VR
DC-= (DF=3a FOFVmvasa [~5CL=11 29erL 8775211 2y

S ' ' '
A/GOJFTIOF008 DN UNTT=TaPry s DTSPanNE ™ o i‘*E4~~100139L‘b’L“’*9\1*9

el v e

G FURT=ANUSOUKCE s OPT=2 TOMeTIE, 01106

METagy

onnlez?
00014273
6001424
001275
0012~
00014627
000147

member subroutines member | subroutinesg nmember subroutineg member subroutines
ANTL ANTLG LWiA LW1 {] TR1A TR1
ASMR ASMRY EXMA EXMAIN LW2A L¥2 TR24 TR2
CALP CALPHI FACT FACTR GFDL MAIN TSCA T8C
CDAT CDATE FIZR FIXRL MARC MARK TSCB T8C1
CHES CHESUM FOUR FOURTL NEXD NEXT TSTA T8TT
CLAS BLOCK DATA GOER -1 GOERT HEPT NEXTPT TETB TET2
CLCU CLOUD HISW HISWRT NGMX - NGMXAD UNMR UNMRK
CLSF CLSFY HORZ HIORZDF PRIN PRINTR VERT VERTDF
COMP COMPJD HSRE HSREAD RADF RADFLC ZINT XINTGL
COND . CONDAD IFMR I¥MRK SMEQ SMEQAD : ZENI ZENITH
CONS CONSOL IMPD IMPT SMFA L SMFAC CHANGE JUMP,
CORXFR,
CONT CONST INIT INITLZ SMSA S¥sC . TOD,
_ ‘ A TODALF,
CORV CONVAD INTE INTERP SOLA SOLAR DATE,
_ GETIME,
COEL COOL INTR INTRP SRCA SRC JOBNAM
ESATUR | ESATUR,
CPUM - CPUTIM IPMA IPM 17 STDP STDPHI ESDIFF,
DADA DADADJ LNGS LNGSMF SYMR SYMRV ESTABL,
ENDM ENDTIM LWFA LWFD TXOR TCOR BLOCKL BLOCKL
ENDT ENDTS LWFB LWFU TRGF TRGFC

emwvm,m, Member names and corresponding subroutines of N24
version on the IBM 360,195,

FORTRAN DCB
FILE NO. DSN SPACE RECFM LRECL BLESIZE
10 ECMWF, HIST (CYL, (40,1),, CONTIG) VBS 11820 11824
11 ECMWF, CTLBLK (TRK, (1)) VB3 404 408
14 ECMWF, TAPE14 Aowrwmwwquyg CONTIG) FT - 19520
15 ECMWF . TAPE1S (CYL,(31,1),, CONTIG) FT - 19520
18 ECMWF. IDISK (CYL, (1,1)) VBS 328 332
19 ECMWF . ITAPE (CYL, (1,1)) VB3 328 332

Table 3 Work disk files on disk METO43 for the

N24 version

-40-

2., The N48 version on the MET. OFFICE IBM 360/195

2.1 Source code Modification from N24 version:

2.1.1 Fortran source modifications required to change the
resolution ‘
2.1.2 Additional routines to provide operator STOP facility
, and messages at history write time
2.1.3 Changes to the FFT package to prevent unnecessary
repetition of calculations,
2.1.4 Replacement of existing Fortran routines by Assembler

coded routines

2.1.2, 2.1.3 and 2.1.4 could readily be incornorated into the N24

version. All modifications except the assembler source for
2.1.2 and 2,1.4 are contained in ECMWF,SRCE,MET043 (GFDLN48M)

as a set of IEBUPDTE control cards.

Details of changes:
ad 2.1.1 The following routines have changes:

BLOCK DATA CLSFY CONSOL CONST
EXMAIN HISWRT HORZDF HSREAD
IMPT INITLZ LNGSMF MAIN
NEXT , NEXTPT SRC , STDPHI
TRGFC VERTDF XINTGL

ad 2.1.2 There are changes to MAIN, HISWRT, CONSOL and JUMP.

The STOP facility is implemented by inserting'CALL OPSTOP!
in MAIN together with an additional common block / STOP /
which contains the job name, stop indicator, plus the day and
hour of the forecast (supplied by HISWRT) OPSTOP sends a
message to the operator:
'JOBNAME REPLY STOP WHEN YOU WANT TO END THE JOB'.

- An operator reply of 'STOP' sets the stop indicator in the
common block which is interrogated by JUMP at the end of

every time step.

‘00/41

e d o

ad 2.1.2 (continued)
The restart mechanism described in 1.7 is included in the
CONSOL source modifications,
The routine TELLOP is called by HISWRT after completion
of & history write sequence and it sends an operator
message, v
T JOBNAME DUMP AT Ddd Hhh®
where dd and hh are calculated from the number of
time steps which have been executed, rounded to the nearest
hour. The Jobname is supplied to the common block STOP by the
reutine OPSTOP. ,
OPSTOP and TELLOP are coded in assembler and the source is
stored in ECMWF,SRCE,MET043 {(0OPSTOP)
and # " " " {TELLOP)

ad 2.1.3 .
There are changes to FOURTL, COOL and FIXRL

In FOURTL, calls to SMFAC, SYMRV and ASMRV are svoided
except for the first call to FOURTL,

In COOL, the caleculations using DSIN are performed only once
for each combination of factor and sign . In FIXRL, the
calculations using DSIN are performed only once for each
sign (ISIGN=X 1)

ad 2,1.4

JOBNAM and CORXFR have been replaced by'assembler coded
routines, :
JOBNAM retrieves the §mbname as specified on the JOB card
CORXFR performs memory to memory transfers in the fastest
poasible way. The socurce is located in

ECHWYF,SRCE . METO43 (JOBNAM)
and o " " {CORXFR

L Y

A D

2.2 Load modules

2.2.1 Fortran H compilation,
All modified routines were compiled under Fortran H (OPT=2)
and included with ECHMWF.LOAD,MET043 (TEMPNAME) to form
with the assembler routines a new executable module callied
GFDLN48, located in the library ECMWF.LOAD on SYS002,

2.2.2 TYortran Extended H+ compilations.
The following routines have been recompiled using the
Extended H+ compiler with OPT=3:~

*EXMAIN -*HORZDF CALPHI CONDAD CONVAD DADADJ
NGMZAD SMEQAD STDPHI TRI TR2 TSTT
TST2 ASMRYV FACTR FIXRL FOURTL GOERT
SYMRYV CLSFY CO0L IMPT LNGSMF MAIN
NEXT NEXTPT SRC VERTDF XINTGL CHESUM
CLOUD LWFD LWFU W1 %z RADFLC
T8C T8C1 CONSOL CONST o

* These were complled with the SQRT function as inline code.
The compilations were combined with the load module GFDLN4S
to produce a new module GFDLN48X on the same library.

All library functions were replaced by their extended H+
equivalent (IHC...) . There is a simple overlay structure to
counteract memory overheads incurred by using the extended H+
compiler, '

ROOT
INITIAL 7 COMPUTE

consoL EXMAIN
HSREAD XINTGL
INITLZ IMPT
CONST 8RO
CLSFY
TRGFC

The root contains all routines not in the two overlay branches,

oes /43

2,3 Memory and CPU reguirements

More memory is needed when an integraticn is first

started. from inltial conditions because of buffer requitemants,

etc. For subsequent restaris, a smaller region may be

specified.
H EET H+
START 558k
RESTART 508k
NORMAL
g%gg 47sec

Table 5 : Core requiremente and normal

time step length of N48 version
on the IBM 360/195 (using two
different compilers)

vos /44

b

3. The NZ24 and N48 versions on the CDC 8600

3.1 S@ur@g Code

The original code that came from GFDL is on a permanent file
SMAG,C4=5 ,FD=EWAH3. In its original form the code will not fit on
the machine here and so it was modified. All the corrsction sets
necessary to run it with resolutions of Rzé,Néég with /eithout overlay
with/without double precision are on a PF FRED 2448, ID=EWAH3, For
a particular run the user makes the appropriate modifications to the
source, compiles it and catalogues the object file for use in all
but the very first run,

3.2 Work PFilesn

The model requires four work-files to be available at the
beginning of a run., These are the {(t-1,%t) and (t,t+1) files on
TAPE 14, TAPE 15, the control block on TAPE 11 and the sccumulated
integrals on TAPE 18, These are picked up at the béginning of the
run and new cycles cataslogued at the end, In the interim, 1f the
user wishes to save the start up files they should be dumped to
tape and purged from the disc as they are large.

3.3 History Files

H. Storer has developed a system to facilitate the tape
management for the history files., A table is prepsred which tells
which tapes may be written to and how many have been filled already.
When the model writes a history file it also initiates a new Job.,
This job looks upthe VSN TABLE to find which ig the next tape to be
written to and calls on the operator to mount the tape. When this is
done a second job is automatically started which writes the history
file to tape, updates the VSN TABLES and purges the history from disc
This whole system can be disabled and the histdry accumulated as
permanent files on disc if reguired. This is done for runs when
there is npo operator but lots of disc space 1s available e.g.
overnlght or over a wesk-end,

-y

Y.

3.4 Overlays

There is a feature in the code which reduces the core
requirement to the ninimum required to run when the start-up,
radiation, or history writing overlays are not in use,

3.8 Fortran Trap

From time to time the model can fail if another user demands

8 lot of disc space. This would not disturb the running of the
model if it used random access to the disc, In such a case

if the files are closed properly they can be used and no CP time is
lost. There is a feature in the code to trap the Fortran error,
allowing the files to be properly closed before job termination.

3.6 Stopping a run

A run is stopped by setting SWITCH 1 on the Console,

3.7 Examples

Table 5 shows the day file of an initisl run with cataloguing’of
the OBJECT module.

Table 6 shows the day file of a normal run, using the object module
created in the previous run.

- MFA ECMHF SN1i8 ©6413 CHMR 1 L 410 19787776
094461 3.EWAHZOT7 FROM

(9.44¢19.,IP 00021637 WORDS = FILE INPUT , 0OC N
09elbel1GEWAHZ s TO,NTL . CREATE N4BINTRAD 31
§9.44,19,NATY DECK

09l 2L MAPLPART,

093¢l 20 ATTACH, TAPE104HISTORYNUB ID=EWAHI yRW=1,4M
Ol 420 Rl yPHz ¥ ¥FuwaX,

09.,44.20.,PF CYCLE NO, = 004
09-4Q-28-REQU?ST,TAPEiQ,*SN:SYSSETgVSN=ECMWF5.
G9e4be 20 RFQUTST sy TAPZ15,¥SN=SYSSFT,VSN=ECMWF G
09,404,220 REQU_ST,TAPE11,%PF,
£9,4L,20 . REQUCST,,TAPELS,*PF,

U9.444,21 ATTACH,FRED,FRED2448,I0=EWAH3,MR=1,
09.4k 21 .PF CYCLE NO. = 0721
09.44.21.ATTACH,OLDPL,SMAG,IDIEHAH3,0Y=9,MQ=1.
09,44 ¢21 UPDATE (Fy¥==,0,8,C=IN,P=FRED,L=F,

- 09ebbhe2be 1 OVERLAPPING CORRECTIONS
09%.44,26, UPDATE COMPLETL.,
chqgc260UPDATE,FQPQI:IN’N=ANTOQL=A124.
0%.44.33.0ECK STRUCTURE CHANGED

09445403 & OVEPLAPPING CORRPECTIONS
B9.45.04, UPDATET COMPLETE,
09,.45404,REQUZSTHLGO, ¥PF,

0945 0L FTNyA,L=0,I=COMPILC,0PT=2,

G9el5.07 DEAD CODE IN = MAIN
63.47.19. DEAD CODE IN = HOREAD
9.48.11., £2+695 CP STCONNS COMPILATION TIME

69.48,11RETURN(OLDPL,,FRPENLIN,JCOMPILED
U9¢48¢12ATTACH(OLDPL ROUTERUYPS,,ID=ZWNS1)
U9.48,12.,PF CYCLE NO. = 001

69,48.,12,UPDATE(N)

09.48¢13s UPDATE COMPLETE.

09.48.13,RETURN(OLDPL)

6948413 RPFL(773:00)
09.48¢13.FTNyA,L,I=COMPILE,0PT=2,S=PFMTEXT,S=SCPT
09.484134EXT) ‘ |
09.48420, 2.554 CP SEGONDS COMPILATION TIME
09.48.20,RZDUCE.

09,48.20+RETURN(COMPILE)

U9elB e 20 o LABIL s TAPE229RyD=PyNOFRING4VSN=EWI 124,
09,4346 { NT20 ASSIGNEN)

09.49,464NT20 VOLUME SEPIAL NUMRER IS SWG124
09.49,.,48, LABZL READ WAS NLBINTRADVOLAZ
09.49.48. EDITION NUMBER 71
G9.L49,. 48, RETENTION CYCLE 030
03.49.48, CREATION DATE 76167
09.49.48, RIEL NUMBIR gont
69.,43.48,C0PYB2,TAPER22,TAPELZ,
09.51,08,REWIND,TAP"12,
09.51.08.UNLOAD,TAPE22, V
09.51.08.CATALOG,LGO,NLBOBJINTRAD,IN=SWAH3.
£3:51 .09 NERCYCLE CATALOG

(9.51.09.PF CYCLE NO. = 085

69.51.39«RP = u25 DAYS

0945179, LOAD4LGO

ﬁ9‘5l.1ﬂ.NOGO.

§9.51.18., NON=FATAL LOADER ERRORS = SEIT MAP

09.51.30. NON-FATAL LOADZP ERRORS = SEE MAP
Gg.si.BD.OVEQI

09.51439,

10,03.41,¥=*=*=¥=% CM SIZE NOW *=¥=z¥=z¥=x
16.03.61, 00002711008

Table 5: Day file of an initial N48 run on
the CDC 6600 with CATALOG of the object module

© MFA ICMWF SN18 B613 OMR 6 L 410 26/28/76

0830609 HAHOED FROM
UB8¢36¢53.,I° J{ 00384 WORDS = FILE IN2UT 4, 0O 48
JBe26 ¢S50, WAH3 T ,PZ, START FROM FILZIS ON DISC.
(B8¢32¢59.

68430459 MAP(PART) ,

08,37 « JL e ATTACH TAPLL L ¢HISTORYNLBZID=ZWAHI yRW=1,M
08'370)Go&zigpwz¥“‘¥,*““¥.

wde370utLePF OYCLZ NOe = 074

G8e37¢ JUsREQUIST fTAPL L4y ¥SN=SYSSETyVSN=LCOMUHFT,
UBe37 ¢l eRoQULSTyTAPTLS,,*SN=SYSSETyVSN=ECMWF 8.
\QBtzznvtnR»uU_S]9TAP-L1,¥PFO
_ﬁao37:0&.R£QU?ST9TAP£183¥PFQ

G8¢27 ¢ Ul ATTACH TAPL2L,0TLBLKDGJUNTE,ID=CHAHZ,
0843741 +PF CYCLE NOs = uyild
(3¢374u14COPY,TAPE2L,TAPIL1, -

U837 i1 ATTACH,TAP 2L,y TAPEZ1406JUNTD,ID=ZWAHS,

(8e¢37¢vul1+PF CYCLE NUese = 43
_68‘37.ui.COPY,TAPEZQyTAPEIA.

- 8e38¢3L ATTACH,TAPI2E,TAPE15C6JUNTHID=ZHWAHS,
WBe38e¢31.PF CYCLE NUe = 332
J8¢384314C0PYTAPEZS,TAPCZ15,
B4 39.52,ATTACH,TAPT28,INTGRLIOJUNTS,,ID=ZWAHI.,

08e39¢5L4PF CYCLE NU, = o0
W08.39.5Q.COPY,TAPE°8,TQP;18.

ﬁa.“a'68'REWINU,TAPElinAD:449xﬂpti“u
08elueuBeRPTUAN TAPECL TAPE24L4,1APE25,TAPI28,

B8.s4Jc¢v9eATTACH yLGOyNLBOBJINTRAD,,IO=LWAH3,,MR=1,
UBelL4UsGSePF CYCLe NUe = uiB -
'380450&90LOAQ,LGO-

084434 09.N0GO,

UBeuuel7s NON=FATAL LOADZIP ER
03443427 NOn=FATAL LOAJER &R
G8edde2720VER(PL=9Y999) :
D8e43,15¥=¥=¥=¥=% M SIZT NUW ¥=¥=%=¥z=%

8449415, Giung7ii:38 ,
10.5hokl.s=E=r=zr CM SIZT NUW ¥s¥=w=¥=¥
dUeSbalile 0Jgo32s3unR

11:07,06,%=%=%=%=% (M SIZ7 (DW ¥=*z¥z¥=%

il. {70;00‘ GUGGZ?ilUEB
viilh?uLbu =¥z¥z¥z%® OM SI17% NOW #:¥:4=¥;$

11467406 duuu3d23.0R

11,0743, |
11.21.52.%=%=%=%=% Ci{ SIZC NOW *=¥=z¥z¥=¥
11421452 30662711408

11438459, LOCKNUT,

11,4149, UNLOCK.

11454427 L0OCKOUT, . .
11454450 s UNLOCZK, A N e
’12051(53!LOCKDUT' %@uw %, . A
124514534 ULOCK., R ’ '
13413405, LOCKIN, BITRS VP RV
13413623 UNLOTK, L&3Cﬂ¢kmnugd faa;@m?“{a,

1618447, LCCKOUT,

1761313 ULOCK.

17¢13416.L0GCK0OUT.

1763211 UNLOCKS

17432617+ 0MEHL

417439.37.LOCKIN.

1768414530 SToP 77777

17.41433. 9032.052 CP SECUNDS EXECUTION TIHME
17.41.03.7°XIT U, '
17¢41.;6.DISPOSE,TAP£29,P?.

17 ¢41403.0P J0GCul250 WORDS = FILEZ TAPZZ29 4 DC &40
1743 02 CATALOGTAPZ11,CTLBLKIEJUNTBsID=IHAHZ,

-Tvad T

/continued

........

NNSAL L AL RRLL U LN WL ENrEn G AN IR W VS

174103 INITIAL CATALOG

17+41433.PF
17¢41 eG4 RP

CYCle NOe = U31
= U5 DAYS

174176 CATALOG,TAPZ I8, INTGRLUVEBJUNTE,IN= TWAH3,
17.61 .54 INITIAL CATALOG

i?.qj&‘;ﬂ‘?lPF
17410 PP

CYCLc NOe = §731
= ¢ob DAYS

1764l e LGo CATALUG, TAPL14,TAPZ14ubJUN7B,ID0=WAHZ,
17¢4l e b INITIAL CATALOG

1741 0L .PF
17641405 ,3P

CYClLc NQOe = 021
= w5 DAYS

17.41.u6.CATALOG,TAPEL15,TAPZ1506JUN76,5ID=ZWAHS,
1741 .06 INITIAL CATALOG '

1744l ec64PF
17¢41437RP

CYCLT NO. = 271
= 05 DAYS

17414084 AUDLT,ID=ZWAHZ,

1741418
17+41138340P
17641.184M5

17.41418.1I0
17+41.18.CM

EXIT

20034816 WORDS - FILE QUTPUT 4, DC W7
418¢5238 WORDBS (4182528 MAX UsFD)

17.41.18,CPA 910g.812 S=C. 910,312 ADJ,
2490242 SEC. 243ce.242 ADJ.
11074564281 KWS, 67593.773 ADJ.

79184.827

1? Ll 18003
17.41.,18.PP
1741418,

FEXRR R VL RE Y
FRENLREN R R

Table 6;

£721 522 3

=C. DATE 4v9/99/76
IND OF JOB, *¥

EWAH36S5 s/// ZND OF LIST 7/7/
cWAH3BS5 //7//7 SND OF LIST /777

Day file of a normal N48 run, using the object

module created in the previous run.

i

APPENDIX

NOTES FOR THE OPERATORS HANDLING G F D L MODEL RUNS

1. Introduction

The CGFDL model uses s number of permanent files for its
integrations, The main Work Files are called tape 14 and tape 15.
At any instant it is reading from one of these files, producing
a new forecast and writing it to the other. At the end of a
time step the read file becomes the write file and vice verssa.
These two files, together with tape 11 and tape 18 very short files,
catalopgued as CTLRLK (for control block) and INTGRL contain all

the data necessary to run or restart the model.

When the medel is running it can be stopped by doing ONSW1., i.e.
on-switeh - 1. This causes the model to stop within a few minutes,
at the end of the current time step., It then catalogues its

work files Tape 14, Tape 15 and Tape 11 and Tape 18, which are there-

fore available for restart.

From time to time we must make a record of the state arrived

at by the model. This is referred to as writing a history tape.
N. Storer has written a suite of programs which facilitate this
prméedure& When the history file is ready to be copled to tape,
it is catalogued and two new jobs are initiated. One informs the
operator of the tape required. The second job copies the file to
tape, once the tape is mounted. If the copy is successful the Job

also purges the history file.

Q.Og

47

NOTES FOR THE OPERATORS HANDLING GFDL MODEL RUNS

R . g0 TR N AT S R O DL SR G Sy SO R G o AR R ek AT SN AR D e DR U I s S LD AL VoS YOS, i S 0 N ST R U D WK BN SN G i KD SV U5 T LG et R T i €556 S Wkl O AL BT SPR TIR Ma (A SUS 2RY \igk

Thus if everything is running smoothly the system works as follows
At the beginning of a session there are on catalogued disc file

two cycles each of Tape 14, Tape 15, CTLBLK, INTGRL. The low cycles
were used to start the previocus day¥s run and the high cycles were
catalogued at the end of the previous dayv's run. The disc restart
deck is read in, the model picks up the high cycles and resumes iis
run. When it is clear that the restart worked properly the low
cycles may be purged. There is g 6-card deck provided for this
purpose, From time to time during the session the operator will be
asked to mount a tape so that the history can be saved. When the
eperator wishes to discontinue the run he sets switch 1, the job
finishes within two or three minutes. It also catalogues its work

files as new high cycles, ready for the next day's run.

Problems that arise,

The code i8 well tested so that genuine errors within the code
are rare. The commonest problems arise through running out of disc
space, hardware faults on the main frame, dise hardware problems,

failure of the copy of the history to tape.

e B

1. Running out of disc space

Depending precisely on how the job terminates 1t may
or may not produce new high cycles of its work files and
these may or may not be usable. If it fails through a Fortran
error then it will always produce new high cyveles., Running out
of disc space causes a Fortran error. If this is identified
as the cause of the problem then the high cycles may be used
to restart the job in the normal way, once space is available on

the disc,

2. Hardware faults

These are sometimes hard to identify on first encousnter,
For example the job has failed with a Fortran error message
" SQRT with negative argument’ when it was evaluating SQRT (x2+y2),
%,y real, Fortran errors always result in new high cycles being
catalogued. If a hardware error is suspected in such & case then

one should purge the high cycles and restart from the low cycles.

Sometimes, however, in a case of hardware fallure, no Fortran
Error Messa g is issued and the run terminates with no new high cycles
being catalogued. ¥f it seems likely that the fault is in the hard-

ware then the run may be restarted from the existing cveles.

oo 5 o

d. Disc hardware problems

Sometimes it may happen that the files on the disc are
unusable. When this sad situation is reached we must restart
from the most recent history tape. We describe below the details
of the writing of the history tapes. For the moment it suffices
that 1t is easy to establish the tape numer, tape label, and file
number on the tape of the most recent history file. This information
must be given to the history restart deck in the form of a label card
and a SKIPF card. In addition the time step number of the point
from which we are restarting must be provided to the namelist input
of the history restart deck in the form MRSTR=nnnn . This

information is alsc readily available from the table of history tapes,

General

Suppose that a run fails in the course of a session, suppose
further that the above notes indicate that the restart should be
made from the disc files used to start the dayv's work and suppose
finally that a history tape has been written since the morning
start and that there is every reason to believe that the history
is 0.k. In these circumstances one should, for reasons of economy,

restart from the history tape.

B

Problems with the history tapes

The system for writing the history tapes works as follows:
There is a small permanent file called VSN TABLES which has a
record uof the tape numbers and labels of the tapes reserved for the
history. It also tells how many files, if any, are written on
each tape together with information about the date and time when
each file was written together with the time step number of the file,
When a history file is ready to be dumped to tape the model
initiates two small jobs., The first job catalogues the history
file and sets a flag on s permanent file HISTFLAG, 1If the flag
is already set then two or more files must be copied. At any rate
the job looks up the VSN TABLES and issues a request to the operator

to mount the apnropriate tape.

The second job begins when the tape is mounted. The tape
is positioned at the end of information and the history copies
from disc to tape. When the copy is successful the VSN TABLES
are updated, the HISTFLAG is reset to null, the history on disc

is purged and the tape unloaded,

Problems

w55 F

If for any reason this proecess bresks down the following

procedure should be followed

Job 1

Job 2

Job 3

Job 4

Job B

Attach this history file on disc, itemize it to find

how many files are present.

Look up the printed VSN TABLES tc find the next tape to

be written to¢ and copy the disc to tape.

From the printed cutput of the main job determine the
details of the history files and update the VSN tables
Reset the HISTFLAG

Purge the history on disc by atiaching the file, then doing
REWIND followed by ALTER, This leaves a file of zero

length on the disc.

Decks for each of these jobs will be provided but the operators

must insert tape numbers and labels, number of files to be

skipped in SKIPF instructions, and the data for the updating of

the VSN TABLES,

3.6.76
AH/AILD

