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Abstract

The speed of propagation and the rate of damping are found for
quasi-geostrophic, large-scale, atmospheric waves influenced by

a Newtonian heating. Using perturbation theory on a basic state
of rest, but characterized by stratification it is possible to
derive the speed of propagation which to this approximation is
uninfluenced by the heating and the damping rate as a function

of the stratification, the wavelength and other parameters in the
problem. It turns out that the shortest e-damping time is

found for the largest scale of motion.

The energy conversion between available potential energy and
kinetic energy as well as the generation of available potential
energy are calculated from the perturbation solution. Each of
these quantities turn out to be negative because of the nature of
the Newtonian heating. The ratio of the two energy quantities is
particularly simple and is easily calculated for each vertical
model and stratification as a function of the wavelength. This
calculation shows that the available potential energy will
decrease regardless of the wavelength, but the rate of decrease

is larger for increasing values of the wavelength.
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A two level model is used to consider the effects of heating
in the case of a non-zero basic flow with the result that the
Newtonian heating will damp the solution which is analogous

to the barotropic Rossby waves,

The last sections of the paper contain some results of tendency
calculations of the geopotential, the surface pressure and the
vertical velocity for given heating rates. The tendencies depend
upon the thermal stratification, the vertical distribution of the
heating and other parameters. In agreement with other
investigations one can conclude that the heating has a significant,
modifying influence on the atmospheric waves, in particular those

of the largest scale.
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1, Introduction

Several investigations of the influence of diabatic heating on
cyclogenesis and on the development of atmospheric waves have

been made. D8Bs (1961) investigated the scale of the heating as

a factor in cyclogenesis and found that the pressure fall at the
surface increases monotonically with increasing dimensions in the
case where the maximum intensity is proportional to the horizontal
dimension. A number of empirical investigations by Petterssen
(1950, 1955) and Winston (1955) have clearly demonstrated that there
is a marked tendency for new cyclones to form or existing ones to
intensify over water bodies which are warm relative to the

surroundings.

The influence of heating on the baroclinic waves has been
investigated by Wiin—Nielsen et al (1967) in a simple, two level
model with the result that there is a change in the region of
instability, and that heating in general will alter the growth rate
of baroclinically unstable waves. A similar result has been obtained
by Haltiner (1967) who investigated the influence of the sensible
heat exchange on the development of baroclinic waves with the

result that the heating decreases the degree of instabilityv for

intermediate wavelengths but creates instability on the large scale.

The formulation of the heating function is in general a very
complicated matter because the total heating depends upon a number

of physical processes. However, as long as we restrict ourselves to
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the large-scale, quasi-geostrophic motion and are willing to make
the approximation of linearization it has been shown (Wiin-

Nielsen, 1972) that the major heating processes in a two level

model can be expressed in a Newtonian form in which the coefficient
and the equilibrium temperature field depend upon the various
processes under consideration. It is naturally realized that some
processes such as evaporation and condensation are impossible to
incorporate in such a simple formulation, but it is also true that
they are most active outside the quasi-geostrophic regime. It is,
in any case, of interest to analyse the influence of Newtonian
heating on atmospheric waves realising that we must expect to limit
the applicability of the results of such an analysis to the large-
scale features of the atmosphere. An investigation of this kind was
carried out by Fisher and Wiin-Nielsen (1971), but the analysis was
restricted to an atmospheric model which applies to the ultra~long
waves only. It was shown in that case that the only effect of the
heating on the phase speed is the addition of a purely imaginary
part to the phase speed for the adiabatic case indicating that the
speed of propagation is unchanged and that the growth rate is
reduced by the heating. In view of the fact that these results were
obtained for a somewhat specialized model it is of interest to explore
if these results can be obtained for the general, quasi-geostrophic

model,

In the present investigation we shall first select a basic state which
is characterized by no motion and by a given thermal stratification.

This means that we do not have the possibility to investigate any
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instabilities generated by horizontal or vertical shear. On the

other hand, we have the advantage that the results will show the
direct influence of the heating on the phase speed without the
complications generated by other physical factors. We shall also
consider the non-zero basic flow in the two level case.

2. The Perturbation Analysis

As mentioned in the introduction we shall employ Newtonian heating
as the forcing function. This means that we shall assume that the
heating is of the form

H= —Cp Y(T—TE) (2.1)
in which Cpis the specific heat for constant pressure, Y a

constant, T the temperature and T, the equilibrium temperature.

E

When we take the zonal average of (2.1), indicated by a subscript Z,

we obtain
H, = —cp Y (Ty-Tgy) : (2.2)
We shall assume for simplicity that the equilibrium temperature TE

is a function of the latitude and pressure only from which it

follows that TE = T Subtracting (2.2) from (2.1) we thus

EZ*
obtained
H' = -C_ YT 2.
b (2.3)
where the prime indicates a deviation from the zonal average.

Using the gas equation and the hydrostatic equation we may also

write (2.3) in the form
C 1
H' = =R r-X 2.4
R Yp ap ( )
in which R is the gas constant, p the pressure, and ®' the perturbation

geopotential,



The thermodynamic eguation for the perturbations considering a

basic state of rest is
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in which we have dropped the prime on the perturbation quantities

and indicated the parameters referring to the basic state by a

bar. Inserting (2.4) in (2.35) we get

o (2% o ow = 0@
2t (ap) + O = - Y SE
The quantity G in (2.5) and (2.6) is a measure of the static

stability in the basic state. G is in the guasi-geostrophic
case a function of pressure only. The dependence of
pressure is of considerable importance for the nature of the
sclution to the eigenvalue problem to be considered later.

most simple assumption is naturally to consider

constant, and we shall use this assumption in order to obtain the

o to be a

(2.5)

(2.6)

most simple mathematical analysis. In many earlier investigations,

see for example Wiin-Nielsen (1959) and Gates (1961), it has been

assumed that O is inversely proportional to a power of the pressure.

Such an assumption describes the vertical variation of

with a

reasonable accuracy. Still another assumption which is frequently

made is to assume a constant lapse rate atmosphere,

Wiin-Nielsen (1966), From the definition of

2.
()]

- o
S =" 35
]

one obtains using the definition of potential temperature and the

hydrostatic equation that

2

5= L (v )
¢ =% pZ ‘vg T
in which g is the acceleration of gravity, vy = “d%/dz

and de:g/Cm the dry-adiabatic lapse.

In (2.8)

see Jacobs and

(2.7)

(2.8)

is strictly
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a function of pressure, and we shall return to this point later,

but it is evident that T varies much slower than 1)2 with

pressure. It is therefore a reasonable approximation to assume

that
- OO *
o=— : (2.9)
Px
in which Py = P/Po is a nondimensional quantity, Po = 100cb is

a standard value of the surface pressure and

R2T

o, = (Yq=Y)
°© epg d (2.10)
in which ﬁs is a standard value of the temperature. Refining

this assumption we note the well known result that the vertical
variation of temperature in a constant lapse rate atmosphere is

- - By

T = Top* g (2.11)

With this result we may write (2.8) in the form

_ 5,
o= —FE (2.12)
p* E‘
with sz
o, = ___% (Yd -Y) (2.13)
€P,

In addition to (2.6) we will need the vorticity equation which,

considering the basic state, may be written in the form

szm

2 3w
ot

o
+Bé-%=f0 ap

(2.14)

in which we have already introduced the geostrophic approximation

for the vorticity, i.e. ( = 192,
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Assuming perturbations of the form

© = Q(p)eik(x—ct)

and introducing (2.15) into (2.14) and (2.6) we get

. _ A2 df
1k(C+CR)¢; CI ap
ddx

where we have introduced the following notations

- B
Cr k2

. fo
‘R = &

= X
Co = ¥

Eliminating @xfrom the system (2.16) we find

o _cg® crern 4,
dpf  C;? C+igy

in which -3
Cg = Cg(p) =P, O

(2.18) constitutes the eigenvalue problem which will have to be

solved satisfying the boundary conditions
Q=20 at p, = 0 and p, = 1

It is apparent from (2.,18) that Cg

solution of the problem, and that the nature of 2 =

determines the degree of difficulty in the determination of the

eigenvalue.

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

= Cg(p) determines the whole
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3. Solutions with o = Const.

3.1 Adiabatic Case.

We shall first of all consider some elementary solutions which
will serve the purpose of providing the background for other more
Complicated cases. The initial assumption on Cg is therefore

Cg =const, Denoting

c 2 |
9 g C+CR
W= -TzT - (8.1)
I

we consider first the adiabatic case ( CH =0), The solution of

(2.18) is
Q = C; cos(qypy) +Cysin (qypy) (3.2)

The boundary condition at P,=0 gives Cy= 0, while the

condition at Py =1 requires

qq= mn ‘ ‘ (3.3)

when m= 0, 1, 2, 3, ..... Inserting (3.3) in (3.1) we find

Y

solving for C that

R v
C = = i : (3.4)
1+m 2Cy 2
ng
We note from (3.4) that m = 0 gives the normal Rossby phase velocity

while the other values of m . give the phase speed of the higher
vertical modes, which will retrograde with a speed considerably

smaller than the pure Rossby mode.
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3.2 Long Wave Approximation

As shown by Wiin-Nielsen (1961) it is possible to filter out

the pure Rossby mode by neglecting the time derivative in the
vorticity equation. This approximation is normally called the
ultra long wave approximation because for the largest scale there
is an approximatiwve balance between the beta effect and the
divergence effect. The implication of the assumption is that the

guantity q2 now takes the value

c2 C :
2 _ g R
4 == 3 T (3.5)
Cy

while (3.2) and (3.3) still apply. We find therefore that

g B
C=-=35=3 = - 3T 5 (3.6)
mnCy m £
ng ng
which comparing to (3.4) is identical to assuming
2
2 2°TI
I¢«¥m™n 5 (3.7)
Cg“

The approximation is thus clearly wvalid only for very long waves,

The case treated above is adiabatic, but the long wave approximation
can clearly also be made in the case of Newtonian heating. In that

case we have

2 Cy
qi: - §E§ R (3.8)
c;” CHicy
Using again (3.2) and (3.3) we find that
c=- —B— . _icC (3.9)
2 2f 2 H
moT EQE
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This result agrees with the more general result obtained by
Fisher .and Wiin-Nielsen (1971) using a model with vertical
windshear that in a mbdel applying to the ultralong waves the
Newtonian heating will introduce a damping which is proportional

to the wavelength because
L (3.10)

where L is the wavelength. It should however be pointed out that

the e-damping time is independent of the wavelength because

1 1 1
T = = - = (3.11)
e Ci CH Y
3.3 The General Case,
In this case we have
2 ,
a2=-S% % - asip (3.12)
CIZ C+1CH
with the solution of (2.18)
= iq Dy _iq Py .
o] Cse 4 +C4e 4 _ (3.13)
The boundary condition at p,=0 gives C3 = --C4 and
= iq -iq
Q= Cy (e7P* - e7Px) (3.14)

Assuming that C = %' +1Ci and ay= qr+iqiwe get after some
elementary calculations
Q = {-Zsinh(qip*)cos a4, Dy Cr—2c0sh(qip*)sinqrp* Ci) }

+i{ 2cosh(qip*)sin APy Cr—ZSin h(qip*)cos d,.Px Ci}- (3.15)
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For p,=1 we must require that both the real and the imaginary

part of & vanish leading to the equation

2 2 . 2
sinh q; cos d, + coshzqi sin a4, = 0 (3.16)

(3.16) is satisfied only if each of the two terms is zero.

Since cosh2 ay #0 , we must require that sinzqr =0 , leading to

9, = mu (3.17)

With this value of a,. for which coszqr$ 0, we must require

sinhzqi = 0 which means

a; = 0 (3.18)

The remaining calculations are required to determine 4, and qy

Using (3.12) we find

Ata
a, = &}
(3.19)
_ LJA-a .}
a; = (552
where
A= (a%+p?)?
In order to satisfy (3.18) it is required that A = a or b = 0.
From this it follows that
q.? =2 = n?n? (3.21)
Returning again to (3.12) we find the following conditions
2
~ Cg Cr(cr+CR) +Ci(Ci+CH) 2.9
2 =T C C. . C..2 o (3.22)
12 r2 +(i+ H)

c2 c.c c.
o= gt GECr +%RC +CrCy 0 (3.23)

c.2 < .2 . 2
T CI‘ '§"((}1+CH)
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which must be solved for Cr and Ci' The solution can again be
obtained by elementary methods because we have a coupled system

of a first and a second degree equation, The solutions are

Cr
CI' =0 and CI‘ = - _-'T'—Q- (3.24)
and
~ =9
Ci CH and Ci T30 CH (3.25)
where
2
9 2 C1
C=mm o
g

We notice first of all that Cr’ apart from the trivial solution
Cr =0, is unchanged compared to the adiabatic case (see eq.(3.4)),
while the imaginary part shows that the Newtonian heating will act
as a damping effect, but in a more complicated way than in the
ultra-long wave case (see eq. (3.9)). We remark, however, that Ci

in (3.25) will approach —CH when the wavelength increases toward

infinity.

The main results of this section are summarized in Fig.l and Fig.2
of which the first shows the real part of the phase speed for the

first three vertical modes (m= 1, 2, 3) as a function of wavelength

)
together with the three asymptotic values, marked Ag . It is seen
that the higher modes move slowly from east to west and that they
approach their asymptotic values at rather small values of the
wavelength., On the other hand, the lowest vertical modes move more

rapidly from east to west and approach the asymptotic value more

slowly. Tig.2 shows that the higher modes are damped more rapidly

(3.26)
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Fig.1l: Real part of the phase speed in the case of constant

stability (o = 4). Horizontal lines marked AS show the

asymptotic values for very large scales,
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than the lower vertical mode. It is also evident that the short
waves are only weakly damped with large values of Te . The
asymptotic damping time for large values of the wavelength is of
the order of six days and is approached more rapidly for the

higher modes.

The analysis in this section in which the static stability parameter
has been assumed constant is needless to say very simple from a
mathematical point of view., In the next section we shall treat a
more realistic stratification in which 6 varies with the pressure.
It is naturally also possible to use the results of the perturbation
analysis to calculate the energetics of the waves. Such an analysis

will be made at the end of the next section.

4, The Constant Lapse Rate Case.

The problem in this section is to solve (2.18) where © 1is given by

(2.12) and (2.13). Equations (2.18) can in this case be written in

the form
2
2 a Q 2 m -
p* dP 9 +Q5 p* Q=0 (4=1)
*
where
m= =¥ (4.2)
g
and
OoPn2 CH+C
a2 = - ——p B (4.3)
CI C+1CH
in which
2
_RT
% T —3 (vgq -¥) (4.4)
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The solution to (4.1) satisfying the condition Q- = Oat
Py =0 is
El
, n, . 1
2 = Cg p,* J_(2nqp,*™), n ==>0 (4.5)

We must next satisfy the condition that = 0 at P =1 . It is
known that all zeroes of the Bessel function for n> ~1 are real
It follows therefore that the imaginary part of q5 1s Zero

because q must satlsfy the relatlon
J,(2nag) = 0 | . (4.8)

i

Denoting an enalogy with'section 3 ag ﬁqr+iqi we know‘that qi=0’
and that’ d,, can take all values determined by 2nqr =j ’where J
is an arbitrary zero of the Bessel function. Using again the
results and notations introduced by (3.12), (3.19) and (3.20) we

find the following equations for the determination of Cr and Ci

CHC+CRCs= —CpC (4.7)

R“i - “R"H
: 2
‘Cr(cr+CR)+Ci(Ci+CH) . Cq 9
2 p) =" 57 4 O (4.8)
Cr +(Ci”*'CFI) %oPo

corresponding to (3.22) and (3.23). The solution of these equations

is straightforward, and we get

C_.=0and C_ = - Cr
r r 1+Q
(4.9)
- _ - _ Q '
Cl = CH and Cl = Tm: CH

where Q, is defined in (4.8), It is thus seen that the solution
(4.9) is completely analogous to the previous, the only difference

being the one between Q and Q. In order to evaluate the solutions
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we need first of all to determine n, the order of the Bessel

function, which in turn depends upon the lapse rate v

values n = 4 and 5 give the lapse rates Y= 0.85 x 1072 and

. The

¥= 0.68 x 10“29 respectively., 'he corresponding values of q. ,

evaluated from the tabulated values of the zeroes of the Bessel

function, are given in Table 1.

n =410.949511,38311,.7966|2,2020[2.6034(3.0024/3,39993,79644,1921

n =9510,8771}11.2339{1,5700}1.8980[2.2218|2.5430/2.86773,18123.4989

Table 1.

Figure 3 shows the phase speed for the first three vertical modes

for the cagse n = 5 ( Y =0,68 x 10“2 1

deg m ). A comparison with
Figure 1 shows that the vertical variation of the static stability
parameter has a very significant influence on the speed of propagation
giving larger numerical values of Cr° The € - damping times for the
same case are shown in Figure 4 which indicates that the e ~damping
times are larger for all wavelengths than those shown in Figure 2.
The case n =4 ( Y = 0,85 x 1072 deg mml} is displayed in Figures 5
and 6 which shows that a reduction in the retrogression of the waves
is found when Y is increased accompanied by a decrease in the
€ ~damping time. A straightforward compariso
o is kept constant is not possible because this case is not
characterized by a constant lapse rate. In fact, the vertical

distribution of the temperature in this case is such that a negative

lapse rate exists in the lower layers of the atmosphere.
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Real part of the phase speed in the case of a constant
lapse rate (n = 5 ) as a function of wavelength for the

first three vertical modes. Asymptotic values for large

values of the wavelength are given on the curves.
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Fig.4: The e-folding time in days as a function of
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Same parameters as in fig.3.
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Real part of the phase speed in the case of a constant
lapse rate (n = 4 ) as a function of wavelength for the
first three vertical modes. Asymptotic values for
large values of the wavelength are given on the

curves.
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Fig,6: The e-damping time in days as a function of
wavelength.

Same parameters as in fig.5.
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5, Energetics of the Waves,

The inclusion of a heat source in the model indicates that there

will be a non-zero generation of available potential energy.
Similarily, the existence of a vertical velocity in the model
guarantees that there will be an energy conversion between available
potential energy and eddy kinetic energy. In view of fhe fact that
the results in section 4 show that the constant lapse rate atmosphere
is more realistic than the model with a constant static stability
parameter we shall in this section calculate the generation of
available potential energy, G(A), and the energy conversion C(A,K)

using the results in section 4. For this purpose we need (4.5) for

Q2 ., Introducting a new indpendent variable
1 2
- ; o _ n
¥= 2nq p,~ " , Dy =(§§E) (5.1)
we may write Q in the form
1 n
Q=C———="y J (¥) (5.2)
(2nq)

The amplitude of the geopotential, &®,, can be calculated from the

vorticity equation (2.16) giving

c.2
I 1 dag (5.3)

e F i + do
P, ik(C CR) dp,

or, upon evaluation,

2
C n -(n-1)
_ I 1 (2nq)

= C TE(CTCL) T y Jpo1(M) (5.4)

Assuming that
o = ae™FFC) o goosk(x-C_t)e"Ci" (5.5)

we find 2

‘1 ! ‘ de
o - PE (CpiC,)23C 2 (C; cose-(CHCp)sin Pdo— oKC3t (5.6)
1

dp,
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in which

® = k(x-C_t) (5.7)

With these preparations it is straightforward to calculate

C(A,K) = - & [t o 22 dp.dx | (5.8)
' ’ gl, P, D ’
o “o
Inserting (5.5) and (5.6) into (5.8) we find
ca k) =+ Cf Ciig‘ E/ﬂ1<9_9)2dp ) 2Kt (5.9)
! 2g Dpek (Cr+CR)2+ Cid o dpy *
or 1
2
__ CI 140, Ch 2kc.ﬁjf o .2
C(A,K) = - 2 e i ()" dp (5.10)
! 2gp k Que | CR2+CHZ o dp, *

(5.10) shows that C(A,K) is negative for all scales., It is also
apparent that C{A,K) will decrease exponentially with time because
Ci is always negative. The conversion of energy from the eddy
kinetic to the eddy available potential energy is induced by the
Newtonian heating because C(A,K) is proportional to CHe In order
to make comparisons later with G(A) we shall evaluate the integral

in (5.10). This can be done by straightforward methods using the

transformation (5.1), We get:

1 2nq 4n 2-4n 2n-1
- dg, 2 _ (2nq) dQ. .2 2n Vi 11
= J[ (dp* dp*~_/[ ~4nz Y (dy) (2nq)2n dy (5.11)

o

e Py

which wupon evaluation can be written in the form

C2 2ngq : 2 : ;
Iy = EH‘jZ y L;nél(yj dy | (5.12)
or
5.2 . 2
= .13
Il ng”“C [?n_1(2nq) (5 )
where we have made use of the fact that J_(2n8)= 0.
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The final result is therefore

2
C 1+Q, C 2kC.t _ 2,2 2

C(A,K) = - 1 H

(A5 Zgp kK Q, Cpatcz°® T8 % En_l(znqil (5.14)

The next problem is to evaluate the generation of eddy available

potential energy. Directly from the definition of G(A) we find

L /p
-1 ° ¥
G(A,K)= - —é—L-/o /O =G (§2)dpax (5.15)

which shows immediately that G(A) €0 due to the Newtonian form

of the heating.

The integral (5.15) can be evaluated using the same transformations
as before. In this connection it must be recalled that o is a

function of pressure, We note that

- 1_5
O = B, Py N (5.16)
giving
1
2 4n-2
1i_ 1 n_1 .y
5~ o P og (Tng (5.17)

In (5.15) we introduce first of all p, as the independent variable

giving

L A

0.2 -

G(A) = - —¥ // 1( 55) dp.dx (5.18)
ng0 fo) 0 Px ‘

Replacing P4 by y as the indepehdent variable we get using (5.1)
L _.2nq 2n 1-2n
- _ 1 (2nq) 2
G(4) é—pi‘)—ﬁ/o/o a———OL—-ZH vy - ( )dd (5.19)

In order to evaluate (5.19) it is most convenient to make use of

(5.6) which, using (5.1) again, can be written in the form

2

2n :
y= - CI 1 . (2nq)“" 1-2n da
O = pok (CR+CR)4+CiZ (CiCOS(D"(Cr+CR) sing) 5n y a-; (5.20)
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(5.20) is differentiated with respect to y and substituted in

(5.19) together with the expression (5.17) for 1/ G . The result

is
Gy = - crt (11Qy 2 0 (2nq)?"*? sznqyzn"T:d (pi-2n dasloo
- 2 kC 4 2 3no dy dy
EPo g Qy Cp“+Cy? n y y
(5.21)
The remaining problem is to evaluate the integral
L7 ener [a o 1-2mo@ ]2y (5.22)
29, 7 ay Y dy v °
(5.22) is evaluated using the expression (5.2) for Q = Q (y), and
it turns out that
§ 5 2ng )
Iy = 5= y [Jn(y) dy (5.23)
= (2ng) o
which can be evaluated directly giving
S e onq2 (=3 L (2na)d. (2 (5.24)
o= Toagqyzn 20 AT (=Jp 4 ng)Jd 4 (2nq)) .24)
where we once again have made use of the fact that Jn(2nq}==03 It
can furthermore be shown quite easily that
= 5.25
ani(an)+Jn+1(2nq) 0 (5 )
(5.25) follows immediately from the general formula
3Y) = 5.26
y(I_{(3*T 1 (¥)= 20T (¥) (5.28)
where the right hand side is zero for y = 2ng. Combining (5.25)
with (5.24) the following expression for G(A) is found:
Geny = cr*  1iq.2 _ Cm wadc? T (2nq) 2 (5.27)
(&) =- 28D EC 2 Q. ez M [ n-1<747
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The expressions (5.14) and (5.27) can be used to explore the

energetics of the waves. We note first of all that

2

\V]

G(A) _ = £ 5.28
TOETE) = 1*Q = 1+ Ce 9 ( )
which shows that G(A) = C(A4,K) for L =0, Figure 7 shows the

relation (5.28) for the first three modes indicating that

[ G(A)I> |c(A,K)| for all values of the wavelength. Both Figure 7

and (5.28) show that the ratio of the generation and the conversion
is larger for the higher vertical modes than for the smaller modes
for a given value of the wavelength. The reason is that dr
increases with the vertical mode number. The interpretation of

this result is that the energy reservoir of eddy available potential
energy is being depleted due to the Newtonian heating. As the
evaluation shows this is not only due to the fact that G(A)K O

which represents a loss of eddy available potential energy. This
loss is partially compensated by the conversion of eddy kinetic

to eddy available potential energy. However, the compensation is

not enough to prevent a decrease of the eddy available potential
energy which therefore in the actual atmosphere must be replenished
by some other process. This process is naturally the conversion

of zonal to eddy available potential energy. Figure 7 shows further-
more that the higher modes lose more eddy available potential energy

than the lower vertical modes for the same value of the wavelength,

A further illustration of the behaviour of G(A) and C(A,K) can be
given by noting that G(A) = C(A,K) for L =0, We may thus normalize
the expressions by determining the arbitrary constant C in such a

way that G(A) =C(A,K) =1 for L =0. This procedure leads to

2 2gpoY
c® = = (5.29)
2 2
nCy [Jn_l(znq)]
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The ratio between the generation of available potential
energy and the conversion between available potential
and kinetic energy as a function of wavelength for the
first three vertical modes.
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With this value of 62 we may calculate -G(A) and -C(A,K) as a
function of wavelength for the various vertical modes. These
curves are shown in Figures 8, 9 and 10 for the first, second and
third vertical modes, respectively. The curves show that -C(A,K)
decreases monotonically with increasing wavelength to an asymptotic
value which depends on the vertical mode. The asymptotic value

is derived from (5.14) by letting k= 0, Using (5.29) for C2 we

find that
2,2 2
£6°Y 5.30
-C(A,K) | K=o = —QEY" Eﬂz ( )
g

showing that the higher vertical modes (q large) have larger
asymptotic values as is also seen from Figures 8, 9 and 10. The
same figures show also that - G(A) has a minimum for each vertical
mode., The position of the minimum moves toward smaller values of
the wavelength as the higher vertical modes are considered. This
behaviour for the vertical modes can be derived from (5.27) by
finding the value of k for each G(A) becomes a minimum. Using
(5.29) for Cz we find that - G(A) can be written in the form

4.2 4

~G(A) = ikLlel_ F(k) (5.31)

Cc
g

where o
(1 +Cg— x%)?
F(k)= a?fo (5.32)
(52+Y2k2)k2
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Differentiation of (5.32) with respect to k shows that the

derivative is zero when

k2 = — 1 . (5.33)
A
q<fo 82
or that the wavelength for which -G(A) is a minimum is
L —onCe o¥2yh (5.34)
min q2f02 BZ

Since q increases when we consider higher and higher vertical

modes, it is seen from (5.34) that Lmin will decrease as sBown

on Figures 8, 9 and 10, The same formula shows also that there is

an upper limit for q if - G(A) should have a minimum, because it must

be required that the radicand in the square root in (5.34) must be

positive, The maximum value of q is

2 2
(3 BT Cgoyd
Iax = B3 $53) (5.35)

Using the same numerical values as before we find that Dpax = 3.4,
Comparing with the values of g shown in Table 1 (n=4) we find that
the first seven vertical modes will have a minimum value of -G(4),

In the general case we find after some calculations that.
2.2 2 2

_ _ 4f5"y 2.C _ Y 2
G(M)pip = =2 0" (385 - Loq) (5.36)
Cg4a fo B

It is seen that —G(A)min =1 when q =q max.

The main results of the investigation of the energetics of the
waves are thus that G(A) and C(A,K) are negativé, that A will
experience a loss of energy because G(A) is numerically larger than
C(A,K), and that -G(A) for the first vertical modes has a minimum
which varies between about 4000km for the first mode and 2000km for

the third mode.
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Newtonian Heating with Non-Zero Basic Flow.

The solutions described in sections 4 and 5 are obtained in the

case where the basic state is a state of rest,

The influence of

Newtonian heating on the development of baroclinic waves has been

investigated by Wiin-Nielsen et

geostrophic model,

the Newtonian heating makes all

length unstable,

The general

We shall here

result obtained

al (1967) for the two level guasi=

in that case is that

waves longer than a critical wave-

reconsider the problem and

investigate the degree of instability as well as the influence of

the Newtonian heating on the speed of propagation of the waves,

The same guestion has been investigated by DBBs (1969) who &olved

the perturbation equations in a model with continuous vertical

stratification and forced by a heating depending on the surface

temperature and having a specified vertical distribution.

In the

detailed calculations the heating was proportional to pressure,

The present study in which Newtonian heating is used should

supplement his result,

For our purpose we shall

snlve the perturbation equations directly

and obtain a formula for the complex wave speed. The perturbation
equations are (see (2.8) and (2.9) in Wiin-Nielsen et al, 19867)
=X ea 30T
= - 2k =
s (U, CR) 5% ﬁT 5 =0 (6.1)
P 2 2 2 2 '
3 -
5T (U - g oy 32 K V% = - 0 T @2
k“+g s k%+g k“sq
in which the subscripts, and T are defined as follows
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Cry =40, + O]
(6.3)
(Vg = &[()1-()3]
and where the perturbations have the form
Oy g =0y g D) (6.4)
. 2
while ‘qz = 22% (6.4)

Introducing (6.4) in (6.1) and (6.2) and proceeding in the usual
way we can calculate the complex wave speed from the frequency which

with the notation x =C- U, is

2 2 2 2
X% gk_iﬂ_c 1 A0y b X +_§§;§CR2 - S5 qz UT2+1‘§'__'U ? =0 (6.5)
k+q qQ“+k k“+q k®+q

The solution to (6.5) is most conveniently written in the form

%{ 1+2n° Cp + 2 + i ——Hb“cz}
1+ 1+
_ n n 1+4n (6.6)
2
%{} Lian, s - - 1 Dt
\ 1+n 14n 1+n
in which
k s+q. s-q.?
no=3, 2= G, b= (& (6.7)
and
A2 2 2 2
Q = CR - CH - 4(1-hn") UT (6.8)
and

tn
H

2 2, 2.% (6.9)
(Q +4CR CH )
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It is seen that the second solution in (6.6) represents damped
waves in all cases because the imaginary part is negative. The
expression for the second solution shows also that the damped

wave will move slower from west to east because of the term

—a/(1+ x2).

The first solution in (6.6) will represent an instability if

b=>C It is easily shown that the inequality is satisfied if and

H@
only if

k < g (6.10)

It is thus seen that instability occurs for all wavelengths larger
than

L = 2n (6.11)

On the other hand, if the Newtonian heating is excluded (CH==O) we

find that S =Q, b =0 and a =Q*% where

Qp = Cp - 4(1=n?)u 2 (6.12)

In this case we get the well known solution

o

A 2
3 - 1+23 Cp *
1+ 1+n

X=X - , (6.13)
1+2n Q
- - cp - —-*—-5,,
{ 1402 B up }
~

In order to compare the degree of instability we have computed the

. . 1 ; .
8- folding time Te = - from (6.6) and (6.13) in the regions of
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instability. ¥F¥or this purpose the following values were adopted:

“12mnlsec_1, Yy =2 x 10—6sec‘1, qQ =2 x 10781 ana

B= 16 x 10
”UT = 15msec“1, corresponding approximately to a vertical wind
shear of 4 msec_lkmml. The result is given in Table 2, in which Te

is expressed in days.

It is seen that the heating in the common region of instability
in general decreases the degree of instability. This is true for

6« 1<8 x 10%, but

all the values listed in the table, 4 x 10
there are small regions in which the opposite must be true for the
simple reason that Te in the case of no heating has two vertical
asymptotes at the values of L which represent the transition from
instability to stability. These values of L are determined by the
relation Q,= 0 and for the same values of the parameters one finds
the values L = 3192 km and L = 8330 km. On the other hand, the
curve for Te in the case of heating has a vertical asymptote at

L = 3142 km, However, in the small regions in which Te (heating)
< Te (no heating) the values of Te will be so large that the
physical significance is doubtful. Table 2 shows also that the

instability created by the heating at large wavelengths is very

weak with e -folding times of a week or more.

While the influence of the Newtonian heating thus is of a minor
nature with respect to the instability it is much more interesting
to investigate the phase speed. The formulas are (6.6) and (6.13)
which show that the important contribution from the heating comes
from the term a/(lé-nz). The main point in (6.6) is that we may
be permitted to disregard the solution which corresponds to the
damped wave. The reason for this is that the time required to

decrease the amplitude by a factor of e is relatively short as
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seen from Table 3. This is particularly so for the medium and

very long waves which are of special_interest here. The phase speed
of the damping waves is very largevand negative for long waves as
seen from (6.6) but this fact is supposedly of little importancé

since these waves are damped relatively quickly.

The amplifying waves on the other hand will move relatively slow1y4
from east to west for large values of the wavelength due to the
compensating effect between the first two terms in (6.6). This is
clearly seen from Table 4 in which we have listed the valueé of
these terms as a function of wavelength. The first term is the

familiar beta-effect, while the second is the effect of the heating.

Some years ago the author (Wiin-Nielsen, 1970 and 1971) investigated
the motion of very long transient waves by the use of the
perturbation method and employing a basic state of rest and a
vertical stratification characterized by a constant lapse rate.

It was found in these studies that the only vertical mode which
moved with a large phase speed from east to west'was the basic
vertical mode corresponding to the mode found in a homogeneous fluid
with a free surface. This mode is very similar to the nondivergent

Rossby mode modified by the influence of surface pressure changes.

In the present study we find that the second solution in (6.13) in
the case of no heating will approach the Rossby wave speed - CR when
k20 as is well known. This solution corresponds in the case of
Newtonian heating to the damped solution, and it will therefore not

exist in the model atmsophere after a certain period of time.
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On the other hand, the first solution in (6.13) will for large
values of the wavelength (k- 0) approach the value - B/2q2

because Q,} in (6.12) will approach c? - a5t ~c,. mhis

R
solution will correspond to the first solution in (6.6). Since
the wave is amplifying for all values k<q, i.e. the long waves,
it will exist in the atmosphere, and its phase speed will be given

by the values listed in Table 4.

The above result appears to be of importance because it indicates
that the main result of the Newtonian heating is to give all the
waves larger than a critical wavelength a complex phase speed.

The solution which in the adiabatic case behaves similarly to the
nondivergent Rossby waves, i.e. Xra»—oa, k> 0, becomes a damped

wave with e -damping time of less than three days, and it will thus
not appear in the model with any significant amplitude. On the other
hand, the unstable solution will move slowly in the negative.direction
relative to the basic current at the mid-level. The results of this
analysis indicate therefore that a model with Newtonian heating
should not suffer from an excessive retrogression of the ultra-long
waves, which has been a constant problem with adiabatic models.,

It must on the other hand be stressed that these results are based

on the theory of small perturbations and on a particuiar form of
heating. The Newtonian form adopted here is certainly a simplif-
ication, but there are good reasons to believe that it is of the
correct form for the large-scale motion because on this scale the
heating is dominated by the interaction with the surface of the

earth.
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7. Some Tendency calculations.

The earlier sections of this paper have been devoted to an analysis

of the direct infiuence of Newtonian heating on atmospheric waves.

In addition, it is of interest to investigate the vertical velocities,
the tendencies in geopotential and/or pressure and the temperature
tendencies which are caused directly by the heating. Calculations

of this kind have been carried out by D88s (1961) who found that

such changes are very scale dependent. Our results will coafifm

his conclusions but will give some additional results.

In order to isolate the effects of heating we shall disregard
advection and thus use the following simplified quasi-geostrophic

equations

av2® = ¢ 200
at o oD
(7.1)
re) &, ,~ B 1 A
N il B0 = e e = H
3t éZp) o C. p
P
in which we have neglected the beta-effect. From the system (7.1)
we eliminate ® and obtain the following equation for o
2
2 8w = _2 _ R 12
fO,gﬁz+Gv CO—--CE EVH (7.2)

The procedure will be to specify the diabatic heating H, solve (7.2)
for  with the boundary conditions that « vanishes at the top of
the atmosphere and at the standard pressure p = ppo at the ground, and
to calculate the tendencies for ® from anyone of the two equations

in (7.1). In order to keep the calculations relatively simple we

shall specify the heating in the form

H=H (B~ ) sin kx sin my (7.3)
0'Dg
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in which HO is the maximum heating at pP= po, while q is a
constant. The two constants k and m are the wave numberé in the x
and y directions, respectively. We note that a large value of q
means a rapid decrease of H with height. Solutions to (7.2) of

the form
w = R(p) sin kx sin my o (7:4)

will exist. Inserting (7.3) and (7.4) in (7.2) we get:
2 2

£ 2 42 ¢q R 2
o) =2, _ a-1
b2 apx2 | ST o Hors (7.5)
o] p po
in which s2 = k2 +p2,

The solution of (7.5) depends on how g = o (p) varies with pressure.

A relatively realistic specification is

- _ -2

in which case (7.5) takes the form

2
leo dz 0052 _..R 2 a-1
3 T2 "~ T3 R=— = H p, (7.7)
Py dpy Py o Po

The solution to (7.7) is easy to obtain, and after the integration
constants have been determined in such a way that the boundary

conditions are satisfied we find that

Q = A(p,**1p,5) (7.8)
in which
1, 9 p,2 2.t}
6 =13+ (7 + T 5 S ) (7.9)
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and
2 H
A =B S o (7.10)
C, Py 5 2
p © le] 2
e (a+1) =~ G~S
P} o
-Po
Using (7.9) we may also write (7.10) in the form
R S2 Hy p
B e 0] (6]
AT T T2 b - B-D6 (7.11)

b

It is seen from (7.11) that A goes to infinity if a = 6~1
However, in this case the parenthesis in the expression for & 1is

identically zero, and & becomes simply undefined. For a given

value of o  we can calculate the corresponding value of s for
which 2 is undefined by setting 6 = o+l din (7.9). We find
e 2
s? = mm%—» a (a+1) (7.12)
“oPo

£2

Introducing a horizontal effective wavelength by the relation

L =2 (7.13)
we find
2 . 3
_ SoPa 1 (7.14)
L= 2n(55" Starr)
If & <o+l it is seen that A0 and (6.8) shows that Q<0
for all p,. On the other hand, if &>a+l we find A £ 0, but
according to (6.8) we will still find @< 0 for all p,, because
ﬁﬁ* 1)» p*é5 for 0<p,<1 in this case. Figure 11 shows the
vertical distribution of - @ for two cases in which L = 1000km and
L 40000 km, while o =3 o_ = 2 MTS units and H, = 107 %5 t7lsec™!
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in both cases. It is seen that the largest values of - @ are
obtained for the smaller horizontal scale. The position of the

maximum for - Q is obtained from (7.8), and it is found that

1
Py max =(gFy) o6+l (7.15)
while the maximum value of  is
a+l 5
_ 5 a~6+1 5 o~6+1
e max A (q+1) »(OH'I) (7.16)
Figure 12 shows in the upper part the maximum value of - g

as a function of wavelength for Oo= 2, a= 3, and HO = 10”:?L

indicating that -Q max decreases with increasing wavelength,
The lower part of Figure 12 shows the position of the maximum as
& function of wavelength. It is seen that the maximum occurs for

smaller values of p, as the wavelength increases.

The geopotential tendency is obtained from the vorticity equation

in (7.1). Writing the tendency in the form
30 :
3% ==§%§sin k x sin my (7.17)
we find
3 Afo 5-1 o |
== = — Q.| 6p, - (a+1)p.™ (7.18)
ot  pg s | X SE (7.
Figure 13 shows the geopotential tendency for the two cases:
L = 1000km and L = 10000 km using the same values for the other

parameters as before. The tendency is expressed in the unit: mdayﬂi,
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It is seen that the larger values of the geopotential tendency

are obtained for the larger horizontal wavelength. This is due

to the factor s2 which appears in the denominator in (7.18). This
scale dependence can be further illustrated by calculating the
surface pressure tendency which is obtained by setting Pyx=1

in (7.18) and converting oOg/3t to a pressure tendency using

the hydrostatic equation. Figure 14 shows the surface pressure
tendency, expressed in mb/3 hours, as a function of wavelength.

The fall in the surface pressure generated by the heating iﬁcreases

with increasing wavelength.

The results quoted above areAnaturally determined by the specific
specification of the heating, eq. - (7.3), and the static stability,
eq. (7.6), used in the calculations. It is of some interest to
investigate how sensitive the results are to these specifications.
For this purpose we shall give a couple of additional examples.

The first example is one in which the static stability parameter
is assumed to be constant replacing (7.6). Setting o=0= const.

we must now solve (7.5). The solution is of the form

Q=0 (p)+ C, e¥P* 4c, e WP o (7.19)
where ‘
- 3
qQ = %?%?_ (k2+m2) (7.20)
O

and wherebﬂd(p¥ﬁs a solution to (7.5).‘

0 O(p*) is particularly simple tb evaluété iﬁAthe case where g = 2

in which case we find
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R H
go(p*) = - T o._g'op* = Bp* (7.21)
b
where
B _%__ Hy (7.22)
p oPg

The integration constants in (7.19) are determined from the boundary

conditions. From Q =0, py,= 0 we find C1 = =C and (7.19) can

2’

be written in the form
Q = Bp + C sinh(ap,)  v (7.23)
sk

From the condition @ = 0, p, = 1 we find that

_ B
C—m (7.24)
giving the final form ;
_R_ Ho sinh(gpy) _
ST o, Colmntey P (7.29)

(7.25) must naturally be compared with the solution (7.8) for a=2,

We find in that case:

2

R H 3 8
Q = ~— a S (Py” - Dy ) (7.26)
Cp pO f02 Sz
ez 70

Figure 15 shows the comparisons between (7.25) and (7.26) for
L = 1000km and L = 10000 km. In both cases we have used HO =

1 1

kj t~1sec™ y0,= 2 and o =8. It is seen that the formula

10”
with a constant static stability produces a smaller vertical velocity
in the lower layers of the model atmosphere and a larger vertical
velocity in the upper layers. This difference is particularly

pronounced inithe case of L = 1000 km,
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For each of the two cases it is naturally also possible to
calculate the tendency in the geopotential as was done in (7.18).
Figure 16 shows the comparison between the geopotential tendency in
the two cases for L = 1000km and L = 10000km. The major difference
is that in the previous case we had 9z/0t = 0 for Py = 0 while
this relations is not satisfied in the new case. However, in the
lower parts of the atmosphere there is good agreement between the

" two cases, especially for the larger value of the horizontal scale.

Figure 17 shows finally the pressuré tendency for the case o=0= const,
and o =2 as a function of wavelength The curves are guite similar to
those reproduced in Figure 14, espe01ally for the larger values

of L. For the smaller scale we find that the new case produces

somewhat smaller values of ( ®8p/9t ) _ in agreement with Figure 16.
o

The second special case is one in whichAwe shall maintain (7.6) for
the variation of © , but the vertical variation of the heating will

be changed. Let us assume that the heating is constant, say H =Ho’

in the interval a<p,<1, but zero for O<p,<a . ' (7.7) is now
changed to
Go 9 _ R HobPo 2,2, 1
o) (o *

for a<p,<1, while the right hand side of (7.27) is zero for

0<py<a.

For O<p,< a we find the solution.

Q=0Cyp,l | (7.28)

satisfying the boundary condition at p,= 0. 1In the remaining
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part of the atmosphere a<p,= 1 we have

P

Q = Bp, + C, p,0l+ C (7.29)

2 3 Px

where B is given in (7.22) and 51 = & in (7.9). 62 is obtained from
(7.2) by a change of sign in front of the square root. The boundary

condition at p, =1 results in

C3 ~B-C (7.30)

In order to determine C1 and 62 we shall employ the reguirements
that @ and d@/dp, are continuous at p, = a. The two
conditions lead to linear equations from which C1 and C2 can be

determined. We note the results:
=

o -plet-1 P2 1-sp TTO1 1} (7.31)

1 51-65 613-65 7
and

1-5
c, = B42LL 5 2 .1 (7.32)
{81762
The solutions for ¢ are therefore
_ 51 =1 1-869 ,1-62 1-6. 51,
Q = Bz a te——f—a" 1 -1rp,; 0<p,<a (7.33)
1792 1 -2
and
1-6 8 (s}
-1 2 : 2

Q =B %}p*=p*az) + (52%—; a ~-1) (py 1«p* ) ; a£p,<1 (7.34)

The distributions of § according to (7.33) and (7.34) are shown

in Figure 18 which was constructed using the following parameters:
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1 1 -1

H =10 "kj t "sec 7, a=0.9 and L =1000km and 100000km,
respectively. The value of a indicates that only the lowest 10 cb
of the atmosphere is being heated. As with the earlier examples

it is found that the general magnitude of @ is larger for the

small value of L than for the large value. Secondly, for the small
value of L we find that the signficant values of @ are found in the
lower layers of the atmosphere, while L = 10000 km produces non-
zero values of @ quite high up in the model. The maximum value

of - is in each case found near the top of the heated layer, i.e.
at p,= 0.93 for L= 1000km and at p, =0.91 for L= 10000km. Note
#1so that the vertical velocities in Figure 18 are smaller in
absoclute values than the corresponding values in Figures 11 and 15.
This relationship is supposedly due to the fact that the heating is
concentrated in a more shallow layer (10 c¢b) as compared to heating
the total column. In the former case we find that the total heating
for the atmospheric column is (poHo)/g(e ) which for a= 3 gives

-1 . . -
0.34 kj sec ~, while the latter case gives (g,p)Ho/g = 0,1 kjsec 1

We shall next explore the pressure changes produced at the surface
by the heating. Following the procedure outlined in (7.17) and

(7.18) we find that

2 1-6
& _;=-ig 2 [(16y,6, 132 2= (5,5, (7.35)
tip~i S V-2

Converting (7.35) into the pressure tendency at the surface we

find

[

i
0y
=y,

2 1-8
(%%E) = %—- (8,-1) [a, 2 1] (7.36)
O
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In order to further evaluate (7,36) we make use of the fact that

51 + 62 = 1 and
2 .
2 _ fo
o~ o

where the last equation is obtained from (7.9). Introducihg

the expression for B and (7.37) in (7.36) we find

5
ops, _ _ H.p 1-a
FE = - 5 (7.38)
po
The limiting value of ops/at for L = o2 is found by
setting & =1, and we get
1im 3232 = - %Dg& (1-2) (7.39)
Lo p o ‘
Using the values adopted earlier (H, = 10_1kjt_1sec—1, P, = 100cbhb,

Cp = 1004 mzsec"zdeg"1 and T = 2889K, a = 0.9) we find that
Ops/ 3t in the limit is 0.38 mb/3 hrs. On the other hand if the
heating had been constant through the column up to a = 0.1 we would
find a limiting pressure change of 3.4 mb/3 hrs. Figure 19 shows

( dps/ Ot ) as a function of the horizontal scale.

The examples in this section indicate clearly the main meachanisms
of diabatic heating and its influence on the vertical velocity, the
changes of the geopotential and the surface pressure. The modifying
influence of the heating on the development of atmospheric systems
is clearly indicated in spite of the schematic specifications of

heating and static stability.
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8. Concluding Remarks,

The investigation has first of all given insight into the influence
of Newtonian heating on the speed of propagation and the growth of
atmospheric waves. The simplified form of the heating considered

in Sections 2, 3, 4 and 5 results in general in a damping of the
atmospheric waves accompanied by a destruction of available
potential energy and a conversion from kinetic to available potential
energy. When the basic state has a vertical windshear we find that
the Newtonian heating creates instability for all scaleé larger than
a certain critical scale, but outside the region of instability in
the adiabatic case it is found that the e~folding times are quite
large. The general result inside the region of instability in the
adiabatic case is that the Newtonian heating increases the e-folding

times.

Another effect of the Newtonian heating is that the Rossby type
waves will be damped with rather small values of the e-damping
times. Based upon the perturbation analysis it would appear that
the very long waves in the atmosphere are not Rossby waves, but
rather of the internal type which move much moré slowly from east to

west relative to the basic current.

The tendency calculations presented in section 7 show the order of
magnitude of the influence of the heating on the geopotential, the
surface pressure and the vertical velocity. In addition, the
importance of the vertical variation of the heating has been

investigated.
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