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Systematic improvements of forecasts of near-surface weather parameters
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Forecasts of near-surface weather parameters (temperature, humidity, winds)
are gradually improving, alongside upper-air forecasts due to improvements in
NWP systems (see for e.g. Haiden et al. (2019))
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But systematic forecast biases remain for all modelling systems (see recent
WGNE survey, Reynolds et al. 2019)
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... with complicated temporal (diurnal, seasonal) and geographical patterns
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USURF — Understanding uncertainties in surface-atmosphere exchange

Cross-departmental ECMWEF project (2017-2019) aiming at:

» disentangling the contribution of individual processes to systematic forecast errors in near-surface weather
parameters by using a range of diagnostics for stratifying and attributing errors

 identify the necessary model developments to reduce systematic forecast errors in near-surface weather
parameters

Guiding principles & methods e *" 2 e ==

» start simple (focus on areas away from coasts, mountains)

 verify against routine (synop) observations

» develop routine verification versus super-site observations

» use conditional verification (stratify errors in various ways: 4. enow
cloudy/clear, by land surface characteristics, etc) B = N e

- use model sensitivity experiments (to disentangle role of - G T TR
atmospheric and land surface processes) | '
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radiation measurements
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1. Causes of near-surface wintertime temperature biases

2m temperature bias Cloud cover bias Shortwave raFilatlon Shortwave rapllatlon
downwelling downwelling
(synops) (synops) (CM SAF) (synops)
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Cold bias over southern Europe partly related to cloud errors
(approx. 5% underestimation of cloud cover)

S ECMWF Haiden et al, ECMWF newsletter. 157
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1. Causes of near-surface wintertime temperature biases APPLICATE.eu

Advanced prediction in
polar regions and beyond

Tmin bias Change in absolute Tmin bias

low vs high turbulent
diffusion in stable conditions

Multi-layer vs single-layer snow
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Warm bias at high latitudes warm bias partly related to snow and
turbulent diffusion representation

P
s ECMWF Arduini et al., JAMES, 2019, Day et al., JAMES, 2020



2. Causes of underestimation of diurnal cycle amplitude in summer

Falkenberg evaluation for temperature
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Partially due to too strong land-atmosphere coupling, but representation of
vegetation, surface characteristics, etc, can also play a role

2
s ECMWF Schmederer et al, ECMWF newsletter, 161



3. Causes of dry summer daytime bias 2m dew point bias, day 3, Europe, clear sky
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2m dew point bias, day 3, Europe, all sky
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Partially related to mixing in cloudy (convective) boundary layers
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4. Important to take into account observation representativhess
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5. Wind errors (summertime)

10m wjnd §peed bias, dgy 3,2 00 UTC

Falkenberg

Cabauw
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; ) HRES Nightime low-level
winds have improved
(Sandu et al, ECMWF
.y ) i newsletter, 138)
. Daytime biases partially
K related to mixing in
cloudy (convective)
) " boundary layers

10 m wind speed depends on the quality
of the underlying vegetation maps
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Perspectives of a new land-use for calibrating weather parameters

LAND USE: VEGETATION COVER & VEGETATION TYPES & STATISTICS

NEW ESA-CCI high veg cover NEW ESA-CCI high veg type
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Low vegetation

crops 23.50% 18.00%
sh grass 38.70% 9.00%
ta grass 0.00% 12.80%
tundra 0.70%  6.00%
irr crops 1.90%  3.90%
semidesert  0.00% 11.60%
bog/marsh  0.00%  1.50%
evershrub  510% 1.20%
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decibroad 29.50% 5.60%
everbroad 18.20% 12.90%
mix forest 0.00% 3.00%
int forest 0.00% 24.70%
Remaining
points 35.60% 45.50%

: Sandu et al. (2012) large
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Prospects for reducing systematic biases

These issues are relevant to other forecasting systems so a lot of work will be done in partnership with
colleagues from our Member States

Taking observation (representativness) error into account is very important in particular for ensemble verification

These biases depend on a multitude of factors, so ‘package’ changes are needed, instead of individual changes

< ECMWF 12



Prospects for reducing systematic biases

These issues are relevant to other forecasting systems so a lot of work will be done in partnership with
colleagues from our Member States

Taking observation (representativness) error into account is very important in particular for ensemble verification
These biases depend on a multitude of factors, so ‘package’ changes are needed, instead of individual changes
Ongoing work and future plans:

- multi-layer snow scheme (developed in APPLICATE, planned for implementation in Bologna) — will reduce
wintertime temperature and snow biases (Arduini et al, 2019, Day et al, 2020)

- Vegetation maps (with Meteo-France & IPMA) and vegetation seasonality — can help reduce summertime
and transition seasons biases in near-surface temperature, dew point and winds — optimisation of uncertain
parameters will be needed

- Revision of moist physics (planned for implementation in Bologna) — cleaner interaction between turbulence,
cloud and convection schemes helps address cloud, precipitation, radiation and potentially dew point biases

- Partition of mixing between clear and cloudy updrafts (with TU Delft) - can help with wind and dew point
biases in summer time

- Revision of post-processing of 2t/2d (grid-box average instead of low vegetation category)
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