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MACHINE LEARNING 
FOR WEATHER
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OVERVIEW
What is machine learning? And why is it useful?

TOOLS
What do we need, to make it work?

APPLICATIONS
What precisely can we do with it?

CHALLENGES
What challenges remain, and how might they be addressed?

AGENDA
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MACHINE LEARNING: 
A NEW SET OF TOOLS 
FOR SCIENCE
Machine learning provides a new 
approach for building software, by 
reverse-engineering functions from a 
set of examples. This approach 
complements  traditional algorithm 
development, providing a means of 
devising algorithms too complex, 
subtle, or unintuitive to code by hand. 



4

!(#)

#%

#&

#'

#(

#)

#*

INPUTS

+%

+&

+'

+(

+)

+*

OUTPUTS

MACHINE
LEARNING

Find !, given # and +

# +

REVERSE-ENGINEERING FUNCTIONS FROM EXAMPLES



5

Machine
Learning

Find !, given " and #

" #

A GENERALIZATION OF CURVE FITTING
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MACHINE LEARNING IS 
THE NEXT STEP IN SOFTWARE ENGINEERING

TEMP, PRESSURE, MOISTURE

PROBABILITY OF RAIN

FUNCTION 1

FUNCTION 2

FUNCTION 3

FUNCTION 5

FUNCTION 4

Function1(T,P,Q)

return y

HAND-WRITTEN FUNCTION

Convert expert 
knowledge into a function

LEARNED FUNCTION

Reverse-engineer a function 
from inputs / outputs

Function1(T,P,Q)

return y

Function1(T,P,Q)

update_mass()

update_momentum()

update_energy()

do_macrophysics()

do_microphysics()

y = get_precipitation()

return y

Function1(T,P,Q)

A = relu( w1 * [T,P,Q] + b1)

B = relu( w2 * A       + b2)

C = relu( w3 * B       + b3)

D = relu( w4 * C       + b4)

E = relu( w5 * D       + b5)

y = sigmoid(w6 * E     + b6)

return y
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ML CAN DESCRIBE COMPLEX, 
REAL-WORLD PHENOMENA

EXAMPLE: ATMOSPHERIC RIVER- 3 -

Characterizing Extreme Weather 
in a Changing Climate
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ML CAN IMPROVE EXISTING APPLICATIONS
Improve all stages of numerical weather prediction

PARAMETRIZATIONDYNAMICSOBSERVATION ASSIMILATION

4DVAR

THINNING DISSEMINATION
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TOOLS
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WHAT YOU NEED TO MAKE IT WORK

ML FRAMEWORK GPU ACCELERATORLARGE QUANTITIES OF DATA
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DEEP LEARNING FRAMEWORK

JuliaC++

z

Python
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GPUs and Machine Learning

The Imagenet competition: Automatically classify images from 1000 different categories
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GPUS MAKE MACHINE LEARNING PRACTICAL
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LEARNED FUNCTIONS ARE GPU ACCELERATED

DATA GPU ACCELERATED
FUNCTIONS
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APPLICATIONS
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Feature Detection

Detection Planning

Acceleration Assimilation

Enhancement Parametrization

AugmentationPrediction
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E

Detection Planning

Acceleration Assimilation

Enhancement Parametrization

AugmentationPrediction

Track Extreme Weather in Real Time

Typhoon Soudelor
Gust: 180 mph Cat: 5

Feature 2

Feature 3

Exascale deep learning for climate analytics. In Proceedings of the International Conference for High Performance Computing, 
Networking, Storage, and Analysis(SC ’18). IEEE Press, Article 51, 1–12. DOI:https://doi.org/10.1109/SC.2018.00054
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Detection Planning

Acceleration Assimilation

Enhancement Parametrization

AugmentationPrediction

Monitor Environmental Change

drought  flooding  deforestation  urbanification melting glaciers sea-level change
damage assessment   search and rescue

Helber, Patrick, et al. "Eurosat: A novel dataset and deep learning benchmark for land 
use and land cover classification." IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing 12.7 (2019): 2217-2226.
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Strategy and Planning

Detection Planning

Acceleration Assimilation

Enhancement Parametrization

AugmentationPrediction
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Detection Planning

Acceleration Assimilation

Enhancement Parametrization

AugmentationPrediction

Optimize Disaster Planning

J. Sharma, P. Andersen, O. Granmo and M. Goodwin, "Deep Q-Learning With Q-Matrix 
Transfer Learning for Novel Fire Evacuation Environment," in IEEE Transactions on 
Systems, Man, and Cybernetics: Systems, doi: 10.1109/TSMC.2020.2967936.
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Detection Planning

Acceleration Assimilation

Enhancement Parametrization

AugmentationPrediction

Autonomous Vehicles and Drones

E. T. Steimle, R. R. Murphy, M. Lindemuth and M. L. Hall, "Unmanned marine vehicle 
use at Hurricanes Wilma and Ike," OCEANS 2009, Biloxi, MS, 2009, pp. 1-6, doi: 
10.23919/OCEANS.2009.5422201.
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Accelerate 
Expensive Models

Detection Planning

Acceleration Assimilation

Enhancement Parametrization

AugmentationPrediction
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Detection Planning

Acceleration Assimilation

Enhancement Parametrization

AugmentationPrediction

Emulation: AI powered approximation

https://arxiv.org/pdf/1811.06533.pdf

Cached calculations

Learned model
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Detection Planning

Acceleration Assimilation

Enhancement Parametrization

AugmentationPrediction

Accelerate Data Assimilation via Emulation

Dueben, Hogan, Bauer @ECMWF and Progsch, Angerer @NVIDIA 
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Detection Planning

Acceleration Assimilation

Enhancement Parametrization

AugmentationPrediction

Enhance and Repair 
Your Data
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Detection Planning

Acceleration Assimilation

Enhancement Parametrization

AugmentationPrediction

Use In-Painting to fill in Missing Data

https://www.nvidia.com/research/inpainting/
https://arxiv.org/abs/1804.07723

https://www.nvidia.com/research/inpainting/
https://arxiv.org/abs/1804.07723
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Detection Planning

Acceleration Assimilation

Enhancement Parametrization

AugmentationPrediction

Use Inpainting to Repair Damaged GOES-17 Observations

Matthew Pennybacker, Alexander Ignatov, Olafur Jonasson, Irina Gladkova, Boris Petrenko, Yury Kihai, "Mitigation of 
the GOES-17 ABI performance issues in the NOAA ACSPO SST products," Proc. SPIE 11014, Ocean Sensing and 
Monitoring XI, 110140Q (30 May 2019);https://doi.org/10.1117/12.2521051

https://doi.org/10.1117/12.2521051


29

Detection Planning

Acceleration Assimilation

Enhancement Parametrization

AugmentationPrediction

Use Inpainting to Reconstruct missing Climate Data

Artificial intelligence reconstructs missing climate information, 
Christopher Kadow, David Matthew Hall and Uwe Ulbrich
Nature Geoscience
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Detection Planning

Acceleration Assimilation

Enhancement Parametrization

AugmentationPrediction

Deep Learning Super Resolution to Fill in Details
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Detection Planning

Acceleration Assimilation

Enhancement Parametrization

AugmentationPrediction

Super Resolution techniques for More Accurate Downscaling

Remote Sens. 2019, 11, 1378; doi:10.3390/rs11111378 
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Detection Planning

Acceleration Assimilation

Enhancement Parametrization

AugmentationPrediction

Slow-motion interpolation of video
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every

Detection Planning

Acceleration Assimilation

Enhancement Parametrization

AugmentationPrediction

High accuracy temporal interpolation

Temporal Interpolation of Geostationary Satellite Imagery with Task Specific Optical 
Flow, Thomas Vandal, Ramakrishna Nemani, https://arxiv.org/abs/1907.12013

1x

10x

https://arxiv.org/search/cs?searchtype=author&query=Vandal,+T
https://arxiv.org/search/cs?searchtype=author&query=Nemani,+R
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Detection Planning

Acceleration Assimilation

Enhancement Parametrization

AugmentationPrediction

Accelerate and Improve
Physical Parametrizations
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Detection Planning

Acceleration Assimilation

Enhancement Parametrization

AugmentationPrediction

Accelerate Existing Parametrizations

Cloud Micro/Macrophysics

Boundary Layer 
Turbulence

Radiative
Transfer

Dueben, Hogan, Bauer @ECMWF and Progsch, Angerer @NVIDIA 



36

Detection Planning

Acceleration Assimilation

Enhancement Parametrization

AugmentationPrediction

Parametrizations from high-res simulations

Noah Brenowitz and Cristopher Bretherton, University of Washington
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Detection Planning

Acceleration Assimilation

Enhancement Parametrization

AugmentationPrediction

Create More Accurate
Time-Series Predictions
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Detection Planning

Acceleration Assimilation

Enhancement Parametrization

AugmentationPrediction

Improve storm track / intensity forecasts

https://www.colorado.edu/faculty/claire-monteleoni/sites/default/files/attached-
files/workshop_nips_2018_preprint_0.pdf



39

Detection Planning

Acceleration Assimilation

Enhancement Parametrization

AugmentationPrediction

Forecast Bias Correction

Improving the handling of model bias in data assimilation
Patrick Laloyaux, Massimo Bonavita Peter Dueben, Thorston Kurth, David Hall
https://www.ecmwf.int/sites/default/files/elibrary/2020/19508-newsletter-no-163-spring-2020.pdf
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Detection Planning

Acceleration Assimilation

Enhancement Parametrization

AugmentationPrediction

AI powered Nowcasting 

MetNet: A Neural Weather Model for Precipitation Forecasting
https://arxiv.org/abs/2003.12140
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Detection Planning

Acceleration Assimilation

Enhancement Parametrization

AugmentationPrediction

Augment your tools and
get intelligent assistance
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Detection Planning

Acceleration Assimilation

Enhancement Parametrization

AugmentationPrediction

Build AI powered tools

https://tabnine.com/blog/deep
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Detection Planning

Acceleration Assimilation

Enhancement Parametrization

AugmentationPrediction

JARVIS

https://developer.nvidia.com/nvidia-jarvis
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CHALLENGES AND 
POTENTIAL SOLUTIONS
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LABELLING LARGE QUANTITIES OF DATA
How can we overcome the need for manual labelling?

Self-Supervised Learning
Predicting input B from input A

Human-in-the-loop
Using human machine iteration to 

make labelling easier

Data Fusion
Using one data source 

as the label for another

Reinforcement Learning
Obtaining labels directly from the 

environment or simulation
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TRANSFER LEARNING: DON’T START FROM SCRATCH

Train on simulated or related data Fine-tune on the real data
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BENCHMARKS: THE NEED FOR A COMMON GOAL

WeatherBench: A benchmark dataset for data-driven weather forecasting
Stephan Rasp, Peter D. Dueben, Sebastian Scher, Jonathan A. Weyn, Soukayna Mouatadid, Nils Thuerey

https://arxiv.org/abs/2002.00469

https://arxiv.org/search/physics?searchtype=author&query=Rasp,+S
https://arxiv.org/search/physics?searchtype=author&query=Dueben,+P+D
https://arxiv.org/search/physics?searchtype=author&query=Scher,+S
https://arxiv.org/search/physics?searchtype=author&query=Weyn,+J+A
https://arxiv.org/search/physics?searchtype=author&query=Mouatadid,+S
https://arxiv.org/search/physics?searchtype=author&query=Thuerey,+N
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ENFORCING PHYSICAL CONSTRAINTS

Conservation of Mass, Momentum, Energy, Incompressibility, 
Turbulent Energy Spectra, Translational Invariance

Lagrange multipliers (penalization), Hard Constraints, 
Projective Methods, Differentiable Programming
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INTERPRETABILITY: EXPLAINABLE AI

https://lrpserver.hhi.fraunhofer.de/image-classification

Layer-wise Relevance Propagation
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UNCERTAINTY ESTIMATION

https://www.researchgate.net/figure/Illustration-of-Gaussian-process-regression-in-
one-dimension-for-the-target-test_fig1_327613136



• ML tools provide a powerful new way 
to build software

• I expect many breakthroughs will 
from this direction in the near future.

• GPUs makes ML practical, while ML 
makes GPUs more accessible.

• ML of tomorrow might be radically 
different than today. Tools and 
hardware are evolving rapidly.

• Challenges exist. These tools are new. 
But we have barely scratched the 
surface of their potential.

dhal l@nvidia.com


